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Resum

Aquesta tesi tracta sobre detectar propietats de conjunts d’estats quàntics
ordenats en el temps. No obstant, no tracta sobre la mesura del temps,
sinó sobre la detecció de un senyal fet d’estats quàntics. S’aborden aquests
problemes estudiant com extreure informació d’un senyal que pressuposem que
té ordre, anomenem temps a aquest ordre. Sent més precisos, aquesta tesi tracta
sobre dos temes principals en estad́ıstica quàntica: el punt de canvi i l’anàlisi
seqüencial. El problema de punt de canvi tracta sobre un senyal que canvia en
un cert temps que és desconegut a l’observador. La tasca llavors és detectar un
canvi abrupte de la manera més precisa i ràpida possible. Aquest és un camp
destudi en estad́ıstica clàssica el que només recientement ha estat analitzat en
un escenari quàntic. Aqúı estenem l’estudi d’aquest camp en sistemes quàntics.
Primer analitzem la versió exacta del problema, que correspon a discriminació
no ambigua però restringint-nos a estratègies de mesura de part́ıcules una a
una en oposició a estratègies quàntiques més generals. Trobem que per a un
rang de valors del solapament entre l’estat inicial i el mutat, l’estratègia en
ĺınia té la mateixa probabilitat èxit que lestratègia global. Després estudiem
protocols nous que són útils per a aquest problema general, fan ús expĺıcit de
l’ordre dels estats en el temps. El protocol que proposem permet interpolar
entre els protocols unambigu i d’error mı́nim.

La segona part d’aquesta tesi tracta sobre contrast d’hipòtesis. Estudiem
protocols seqüencials de contrast d’hipòtesis per a sistemes quàntics. Això
representa un angle nou al problema de contrast d’hipòtesis quàntic ja que
fixem en el nostre enfoc les taxes d’error que volem implementar i prenem el
nombre de còpies com a variable aleatòria, cosa que contrasta amb l’esquema
usual on es té un nombre fix de còpies i es minimitza l’error. Estudiem cotes
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inferiors en el rendiment que es pot assolir quan es vol distingir dos estats
quàntics i qualsevol estratègia quàntica de mesurament permesa. El rendiment
en aquest cas està donat pel mı́nim nombre promig de còpies necessàries per
obtenir una decisió per una hipòtesi amb els ĺımits d’error que es demanen. Ens
restringim al cas més senzill de dues hipòtesis quàntiques i estats barreja de
dimensió finita. També estudiem el cas de dos estats purs i obtenim resultats
pel nombre mitjà òptim de còpies necessàries. Els nostres resultats suggereixen
de forma natural l’estudi de protocols de discriminació amb estats purs en ĺınia
més enllà del cas binari. Estudiem el problema de discriminació unambigua
per a tres estats simètrics que és un case molt natural i simple però on les
estratègies en ĺınia, en general, tenen un rendiment diferent que el global quan
més duna còpia és disponible. No obstant determinarem els casos pel que el
rendiment és el mateix.

Acabem aquesta tesi a les conclusions amb alguns pensaments sobre els
tòpics presentats i en general sobre el camp d’informació quàntica i la relació
amb els fonaments de la f́ısica quàntica. Incloem també noves ĺınies de recerca
prometedores que deriven dels resultats d’aquesta tesi.



Resumen

Esta tesis trata sobre detectar propiedades de conjuntos de estados cuánticos
ordenados en el tiempo. Sin embargo, no trata sobre medir el tiempo, sino
sobre la detección de una señal hecha de estados cuánticos. Se abordan estos
problemas estudiando como extraer información de una señal que presuponemos
que tiene orden, llamamos tiempo a dicho orden. Siendo más precisos, esta tesis
trata sobre dos temas principales en estad́ıstica cuántica: punto de cambio y
análisis secuencial. El problema de punto de cambio trata sobre una señal que
cambia en cierto tiempo que es desconocido al observador. La tarea entonces es
detectar un cambio abrupto de la manera más certera y rápida posible. Este es
un campo de estudio en estad́ıstica clásica y recientemente ha sido primeramente
analizado en el caso cuántico. Aqúı extendemos el estudio de este campo en
sistemas cuánticos. Primero analizamos la versión exacta del problema, que
corresponde a discriminación no ambigua pero restringiéndonos a estrategias
de medida de part́ıculas una a una en oposición a estrategias cuánticas más
generales, encontramos que para un rango de valores del traslape entre el estado
inicial y el mutado, la estrategia en ĺınea tiene la misma probabilidad de éxito
que la estrategia global. Después estudiamos protocolos novedosos que son útiles
para este problema general, hacen uso expĺıcito del orden de los estados en el
tiempo. El protocolo que proponemos permite interpolar entre los protocolos
unambiguo y de error mı́nimo.

La segunda parte de esta tesis trata sobre contraste de hipótesis. Estudiamos
protocolos secuenciales de contraste de hipótesis para sistemas cuánticos. Ésto
representa un nuevo ángulo al problema de contraste de hipótesis cuántico ya
que en nuestro enfoque fijamos las tasas de error que queremos implementar y
tomamos el número de copias como una variable aleatoria, lo que contrasta con
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el esquema usual donde se tiene un número fijo de copias y se minimiza el error.
Estudiamos cotas inferiores en el rendimiento que puede alcanzarse cuando
se quiere distinguir dos estados cuánticos y cualquier estrategia cuántica de
medición es permitida. El rendimiento en este caso está dado por el mı́nimo
número promedio de copias que necesarias para obtener una decisión por una
hipótesis con los ĺımites de error que se piden. Nos restringimos al caso más
sencillo de dos hipótesis cuánticas y estados mezcla de dimensión finita. También
estudiamos el caso de dos estados puros y obtenemos resultados para el número
promedio óptimo de copias necesarias. Nuestros resultados sugieren de forma
natural el estudio de protocolos en ĺınea de discriminación con estados puros
más allá del caso binatio. Estudiamos el problema de discriminación unambigua
para tres estados simétricos que es un case muy natural y simple pero donde
las estrategias en ĺınea, en general, tienen un rendimiento distinto que el global
cuando más de una copia es disponible. Sin embargo, determinamos los casos
en los que el rendimiento es el mismo.

Terminamos esta tesis en las conclusiones con algunos pensamientos sobre
los tópicos presentados y en general sobre el campo de información cuántica y
sobre su relación con los fundamentos de la f́ısica cuántica. Inclúımos también
nuevas ĺıneas de investigación prometedoras que se derivan de los resultados de
esta tesis.



Abstract

This thesis is about detecting properties of sets of quantum states ordered
in time. However, it is not about measuring time but about the detection of
a signal made of quantum states. We address these issues studying how to
extract information from a signal that we presupose that has order; we call
time such order. Being more specific, this thesis deals with two major themes
in quantum statistics: change point and sequential analysis. Change point
analyzes with a signal that changes abruptly at a certain time which is unknown
to the observer. The task then is to detect the abrupt change as accurate and
fast as possible. This is a field of study in classical statistics and was first
analyzed in the quantum setting recently. Here we extend the study of this
field for quantum systems. We address firstly the exact version of the problem,
which corresponds to unambiguous discrimination but restrict to measuring
copies as they are available as opposed to more general quantum strategies. We
find that for a given range of the values of the overlap between the initial and
the mutated state, the strategy that we study can reach the performance of
the global one. We then study novel protocols that are useful in this problem
in the more general setting, they make explicit use of the ordering of the states
in time. The protocol that we propose interpolates between unambiguous and
minimum error discrimination.

The second part of the thesis turns to hypothesis testing. We study se-
quential hypothesis testing protocols for quantum systems. This represents
a novel approach to quantum hypothesis testing because in our approach we
fix the error rates that we want to reach and take the number of copies as
a random variable, which contrasts with the usual scheme of having a fixed
number of copies and minimize the error rates. We study lower bounds on
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the performance that can be achieved when trying to distinguish two quantum
states and any quantum measurement strategy is allowed in the limit of small
errors. The performance in this case is given by the minimum average number
of samples that one needs to achieve a decision for one hypothesis with the
error thresholds that are asked for. We restrict to the case of two quantum
hypotheses represented by finite dimensional mixed states. We also study the
case of two pure states and obtain exact results for the optimal average of
samples needed. Our results naturally suggested the study of unambiguous
online protocols of discrimination with pure states beyond the binary case.
We studied the problem of unambiguous discrimination of three symmetric
states, which is a very natural simple case of three hypotheses but where online
strategies have a lower performance than global ones when more than one copy
is available. Nevertheless, we determined the cases where the performance is
the same for both cases.

We finish this thesis in the conclusions with thoughts about the topics
presented and in general about the field of quantum information and its
relation with quantum foundations. We also include promising new lines of
research derived from the results of this thesis.



This page is intentionally left blank





Declaration

I declare that the thesis has been composed by myself and that the work has
not been submitted for any other degree or professional qualification. I confirm
that the work submitted is my own, except where work which has formed part
of jointly-authored publications has been included. My contribution and those
of the other authors to this work have been explicitly indicated below. I confirm
that appropriate credit has been given within this thesis where reference has
been made to the work of others.

ix





List of Publications

• G. Sent́ıs, E. Mart́ınez-Vargas and Ramon Muñoz-Tapia, ‘Online strategies
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1
Introduction

1.1 Science and technology

Science and technology have an intertwined history. Science produces knowledge
that sometimes is transformed into technological advances. Nevertheless, science
needs technology to produce knowledge [AAB+19, Pot21]. We are in a very
peculiar moment in this regard in the realm of quantum science as it has mixed
a lot with technology [ABB+18]. This relatively new paradigm brings new
problems to be thought about. In particular, it is not clear a priori what is
exactly the path that this mixture with technology is dictating to science.

There is a current trend to call quantum technologies as part of a “second
quantum revolution” [Jae18, Aćı16]. This term, from my point of view, comes
from two revolutions in human history: the industrial revolution and the
discovery of quantum theory, which changed a lot of paradigms in physics. This
statement of course, deserves a much larger study but I am just pointing it
out. Now, the first one is a revolution for industry and means of production
and the second one was a breakthrough in science (could be called the first
quantum revolution). The second quantum revolution, being born amidst the
development of quantum technologies is more of an industry revolution than a
scientific one. This is a strange situation because the existence of this revolution
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1.2 CHAPTER 1. INTRODUCTION

is a claim made mainly by scientists [Uni16], not people from industry (the
people in industry however, have become interested in these technologies but a
posteriori). It is therefore important for science to ask: What is the scientific
part of the second quantum revolution? I do not think that this question has
been seriously addressed. Neither do I claim to have the answer but at least
in this introduction I convey my personal view in this matter. I think that
the sensation of paradigm shift that brings to mind a revolution is because
there is a change in our epistemological approach to nature. To support this
claim, I will contextualize quantum technologies as a result of developments in
statistics, computation and science.

This serves as a motivation for the thesis. We will focus on the study of the
optimal detection of sets of quantum states which are ordered in time. This
might sound as an academic question at first glance but it has practical and
theoretical implications. For instance, there is a paradigmatic experiment that
has this setting: the Young double slit experiment with quantum particles. In
that experiment, electrons are shot, one at a time through a double slit and
then collide on a screen. This experiment shows a lot of mysterious properties
from quantum theory. Feynman even said that the double slit experiment
contains “the only mystery” from quantum theory [FLS11]. This sentence
suggests that many of the puzzling phenomena from quantum theory, which
constitute foundational issues can be revealed in this setting.

1.2 Epistemology and determinism

One of the ideals of enlightenment was to put a system known as modern
science as the central epistemological tool to know facts of the world1. The
mathematician Pierre-Simon Laplace was certainly a debtor of enlightenment’s
tradition. He made a name of his own in pre-Napoleonic France as a professor
in the École Militaire. He made important contributions to astronomy and
he published his treatises in Celestial Mechanics [dL99]. One of the triumphs
of classical mechanics is that it allows the complete description of a set of
particles given initial conditions. It is curious, however, that in order to do
so he invented a creature that would remain in the collective imagination to
this day. Laplace called into being a “supreme intelligence” that could know
everything in the universe at any time [dL14]:

1This section is based on Jimena Canales’ book “Bedeviled: A Shadow History of Demons
in Science” 2020 Princeton University Press.
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CHAPTER 1. INTRODUCTION 1.2

An intellect which at any given moment knew all of the forces that
animate nature and the mutual positions of the beings that compose
it, if this intellect were vast enough to submit the data to analysis,
could condense into a single formula the movement of the greatest
bodies of the universe and that of the lightest atom; for such an
intellect nothing could be uncertain and the future just like the
past would be present before its eyes.

Afterwards, this creature received the denomination of a “demon” [Kov15].
This supernatural being was the saint patron of determinism [Day67]. It yielded
the idea that every phenomenon was in principle predictable ad infinitum. This
means, all the information for all future events is already out there somewhere,
as the universe is a giant mechanical engine. Before Laplace’s demon appearance,
the notion of determinism existed in classical mechanics. The prediction of
events from initial conditions was in principle unbounded. This intelligence
extrapolated the logical consequences of determinism to every possible aspect
of science and the universe.

The existence of such intelligence poses a problem for free will and ethics.
If everything can be calculated from a past state, there is no place for choosing,
as it could have been predetermined by a previous step. Not even crimes would
be outside the grasp of the Laplacian demon.

The spirit of determinism crossed the sea into United Kingdom, however,
where it originated with Isaac Newton [JS98]. Charles Babbage and Ada
Lovelace had in mind an endeavour that had similar objectives than that
of Laplace’s demon. They wanted to construct a machine that could make
calculations mechanically. If it is possible to calculate in principle, then it is
a matter of arduous work possibly made by a machine. Although not very
rewarding, the work by Babbage and Lovelace became the predecessor of
computers.

By the same time Darwin proposed a theory of living beings that related
species between them with some dynamics: species came about other species.
Although there is randomness involved through mutations, the overall theory
regards life in a deterministic way [dar59] as evolution explained a lot of the
mysteries in the variety of the fossil records. In a diametrically opposite way
from Babbage, who regarded a machine as a being that calculated, Darwin saw
the living beings as mechanisms. Evolution can be viewed as a mechanical view
of nature. This proved to be a powerful idea that clarified much of biology.
However, obviously, the parallelism is not perfect here. Living beings depart
much from what then was regarded as a machine. Nevertheless, the universe as
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1.3 CHAPTER 1. INTRODUCTION

a mechanism was a powerful picture that inspired thinking in new directions.
The Laplacian mechanical universe included human affairs, of course.

In a groundbreaking book titled Philosophical Essay on Probabilities from
1814 [dL14] Laplace introduced statistics into politics and culture. This meant
to study human behavior in the aggregate, which inaugurated the quantitative
study of society. The tools of statistics could be used to understand phenomena
that were complex to grasp by conventional wisdom. Not only the sciences
gave man a sense of empowerment over nature but also over itself in society.

The ideal that some being could grasp the events of the universe was
so inspiring that approximations to it came into existence with Babbage’s
calculating engine and by applying the tools of statistics to society. It also
inspired somehow evolution theory. Would determinism and therefore, secular-
ism have had the same impact without the allegory of a being? Perhaps it is
the supernatural what excited the imagination.

1.3 Statistics and Computers

A new manifestation of Laplace’s demon is thriving today. Certainly, the ideal
that society’s phenomena can be known empirically is a common place. The
complex societies of the beginning of the XXI century produce large quantities
of data as they keep record of many facts of the world. Also, thanks to a
widespread use of the internet, much of these data has a very high degree of
availability and is easily extracted from the users. This is the ideal place for a
Laplacian demon.

The actual existence of such a being was never a central point for Laplace to
make a point and incite the imagination. An ideal is shown and approximations
to that ideal can prove some use. An intelligent being is not crucial for such a
task, non-intelligent machines capable of some finite computational power can
exist and have been constructed.

Newton’s equations of motion require a precise input to give a precise
output. However, precise knowledge of the whole universe is a very big luxury
that in practice is not available, not even for a specific given system! Therefore,
statistical analysis of human societies was addressed from the standpoint that
the perfect knowledge about them was not available. Not because these aspects
did not exist in reality, but because a system so complex and diverse as the
world has large quantities of knowledge and we are confronted with the reality
of limited resources to transform it into information.

This partial knowledge produced an imperfect image of the world that is
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CHAPTER 1. INTRODUCTION 1.3

good enough for practical applications. We can define an ideal Laplacian demon
as an agent that knows everything about a system at a given time. With this it
is not extravagant to think in an approximate Laplacian demon, which knows
part of the information contained in a system and has limited computing power.

The ideal of deterministic prediction subjected to limitations persisted in
the form of statistics. The XX century produced a large body of research in
statistics and its tools. Also, aided by computer machines new methods were
available. There was a lot of research devoted to artificial intelligence and
statistics of neural networks.

The form of the Laplacian ideal of knowledge nowadays is given by trans-
forming large amounts of data into concise knowledge using computers and
statistics. Being more concise, Machine Learning is the designation that several
statistical techniques have received [The15, Bar12]. It is a paradigm that works
under the presupposition that models of systems can be learned in a controlled
loop. There is a learning agent, a computer program, that can be modified
after processing data such that in the end it contains a model that describes
well enough the observed data. The applications of this techniques has in fact
resulted in a very profitable industry of knowledge [Eco17].

A crucial point that I want to stress here is that statistics has been useful
historically as an epistemological tool. Many phenomena that are too complex
to assess directly can be reduced to few statistical parameters. Not only that, it
can help to efficiently extract information from given data. For example, data
that is ordered in time can contain a lot of information that can be extracted
as e.g. the change of the variance of a distribution through time.

Two statistical fields will be the focus of this thesis: Change Point detection
and Sequential Analysis [TNB14]. These are statistical methods developed
around the half of the XX century. These methods analyze data that is ordered
in time.

Time is a fundamental concept that permeates human understanding [KGW98].
We could dive deep into the philosophical considerations that this entails but
in this thesis we will stand somewhat distant. For us, time will be a parameter
that orders a set of discrete data. Our data can be given at once in an ordered
list or can be given to us in separated moments. We can have the whole history
of the data upon our eyes or we can see it as it evolves. For example, in Figure
(1.1) we have an example of a data series in time. A priori, we can ask different
questions about given data. We could address a question of hypothesis testing,
that is, of guessing if the data we are given comes from a source with given
properties or another possible one. For example, is climate change from human
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1.3 CHAPTER 1. INTRODUCTION

Figure 1.1: Average global temperature anomaly in time.

origin or is it natural?

Perhaps the experience of change is as ubiquitous as the experience of time
itself. How could one experience the passage of time if it was not because
something has changed? Changes can involve large periods of time like those
of geology where we see a displacement in the tectonic plates, or fast like an
economic crash. What is important is that both require the knowledge of
averages in position and configuration. The idea of change point detection is to
precisely locate one statistic change in a signal. The basic scheme of detection
is that of a base signal that is “stable” and then changes into another stable
state. Our task is to detect where this change took place with the highest
accuracy, given a series of observations about a system (our signal).

Returning to Figure (1.1), observe that the graph in itself doesn’t tell us
much, we have to interpret the data. We can use the baggage from statistics and
apply the change point analysis to infer a change in the probability distribution.
This means that the source of the random data must have changed somehow.
Here we have all the data available as a whole because it was taken through
some time and stored.

We can take this series as a whole and infer from it. We can think, however,
in a process that is also ordered in time but such that the data becomes
available as the phenomenon evolves. This means we are given the data on
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the fly. If the data is accumulated and processed in batches there can be a
difference in the cost function one normally tries to optimize. With quantum
resources available there can be an advantage in making a global measurement
on the whole quantum data that constitutes a time series. We call the scenario
of having all the data at once and allowing global measurements an offline
scenario and the scenario of being given samples one by one we call it online.

The second part of this thesis is concerned with the problem of hypothesis
testing. There is a substantial modification of the first part problem as here,
the source machine does not change, we are given several samples of the same
state, we try to figure out which state we are being given. Sequential Analysis
is a method of statistical inference that takes place with several samples that
are processed as they are collected. Several points should be remarked. First
of all, we have an agent trying to make a decision based on observations. This
agent has to decide between two (or more) hypotheses based on its observations
within a reasonable error. The sequential method introduced by Abraham
Wald [Wal73] has the advantage that uses less number of observations on
average compared to other methods. It also has the practical advantage of
being online, taking a decision right after each observation, in other words, it
is an on-the-fly method.

1.4 Quantum science and technology

A major leap in science was taken at the beginning of the XX century: the
discovery of quantum mechanics and the development of quantum theory. As
far as we know, quantum theory is the most precise description of the world.
Quantum mechanics poses a fundamental limit on what can be known by the
ideal Laplacian demon. Heisenberg’s uncertainty principle impedes the perfect
knowledge of the position x and momentum p of a particle:

∆x∆p ≥ ℏ
2
, (1.1)

where ∆ denotes uncertainty.

If we use statistical knowledge then one might assume that a source of
“noise” like quantum uncertainty (Eq. 1.1) would only make things worse.
In a strange turn of events, statistics will be benefited by the same theory
that prevents perfect knowledge. In some cases, as in metrology one can
get better precision with the same number of resources if they are quantum
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particles [GLM11, MVPLBB17]: a quantum Laplacian demon would surpass
its classical counterpart.

Quantum statistics [WM09] is the established theory that arises when
quantum systems are used to store and retrieve information. It was born
amidst the development of quantum technologies [ABB+18].

Much of the efforts surrounding Quantum Theory have been devoted to
the description of the matter itself, its constituents. This is what we know
as particle physics and high energy physics. This research yielded several
important technological developments. Quantum information turns away from
this paradigm and formulates fundamental questions from the viewpoint of
practical tasks to fulfill.

One practical task can be developing highly precise detection devices. A
large research field involves estimating parameters with quantum systems. Also,
very precise clocks can be achieved by measuring the oscillations of an atom,
therefore giving rise to atomic clocks. Using generalized quantum measurements
one can achieve an overhead in precision with respect to what conventional,
classical approaches do.

GPS is a very common technology nowadays that is used in boats and planes
to navigate [ftSP18]. However it depends on satellites orbiting Earth and having
a good signal with them. Another type of navigation was developed in the XX
century, which needs to keep precise track of the changes in momentum of the
ship. With an accurate map and clock we can integrate the trajectory of the
ship in time. This is called inertial navigation and it has the advantage that
can operate independently of external signals [Coo11]. This is very convenient
for example in submarines where stealth is a very important factor. There
are projects to fabricate a quantum inertial navigation system [Lon21] which
benefits from the precision that quantum systems can provide. Quantum
technology becomes very real in this scenario since a good function of the
accelerometer and clock is a matter of life and death for a submarine crew.

Observe that to navigate we would need the information about the inertia
of the submarine which is a set of ordered data in time. One would also have
precise time detection associated with this. Therefore any information that
we can extract from this time series would be beneficial for us. The methods
analyzed in this thesis treat precisely with this general scenario: transforming
data into knowledge with precise mathematical interpretation in such a way
that the error is minimized. Also, it would be beneficial to make the inference
of the position in real time, that is, as data become available. One of the
challenges for using inertial navigation is that it has drift errors which makes
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it less precise [Coo11]. A gain in precision from quantum measurements for
example would be very significant.

The search for precision confronts us with the question of navigating a
ship using quantum apparatuses. This might seem an innocent question but it
has foundational echoes. This is because quantum theory corresponds to our
foundational theoretical understanding of the world. A “quantum submarine” is
system whose only means of direction come from quantum detection. Therefore,
one may ask how to navigate using “quantum senses”. This is by no means
innocent, it goes deep into epistemology, which has been a subject of philosophy
since always. The search for precision leaves us with an epistemological question:
what can be known when one has at hand only quantum systems? This is a
guiding question for developing quantum detection technologies. For me the
availability of new tools for knowing the world represent an epistemological
shift, which is the main topic that I refer to in the first paragraph.

1.5 This thesis

Under this perspective I study here two main problems that deal with the
task of getting information using quantum systems. We study in this thesis
the quantum version of the Change Point problem and Sequential Analysis.
Both problems are related with statistical analysis of time series, however, the
questions they address differ from each other.

1.5.1 Change Point

The first section of the thesis deals with change point detection. Basically, the
problem is to detect an abrupt change from a set of observations in time in
the sampling distribution. The problem can be regarded as a machine that
produces samples with a given distribution and then it produces samples of
another distribution. In the classical case it is very close to the sequential
setting, this means, when one has access to samples one at a time. The problem
to address classically is that we can have false detection events that can be
also called false alarms. Imagine a large sample and we want to detect the
change point as fast as possible. If we have an extremely reactive detector in
order to detect changes quickly then there would be false alarms frequently.
On the other hand, a detector that is too cautious will delay between the time
of occurrence of a real change and its detection. So the problem becomes one
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of finding a detection scheme that minimizes the average delay to detection
subject to a constraint on the tolerable frequency of false alarms.

In this thesis we focus on the quantum case, where there can be an advantage
if we allow large batches of samples states from a machine and perform a
collective measurement. The idea is then to let the machine produce states in
a batch and collect it and make a global measurement. The machine prepares
states of one type and then it changes and produces states of another type.
We are interested in detecting when this change happens. This problem was
introduced in [SBC+16] and [SCMnT17]. In this thesis we further addressed
this questions in two publications:

1. Optimal online identification of a quantum change point.

The first publication dealing with Change Point (not presented in this thesis)
deals with the problem in its simplest form [SBC+16] with no constraints and
the other demands exact identification [SCMnT17] of the change point. The
latter one is an extremely constrained scheme as we ask for answers with no
error. In the first work presented here we study an identification protocol
that allows no error and uses strictly local measurements. It turns out that,
surprisingly one can achieve the same probability of error that the one achieved
in the global case, at least in a given regime of the parameters. In fact, our
results go further than just local measurements, the global optimal can be
achieved with an online protocol that is the one we consider here.

2. Certified answers for ordered quantum systems.

In this work we introduce a new kind of discrimination protocol that interpolates
between the minimum error and the unambiguous protocols using semidefinite
programming (SDP) [BV04, Eld03]. If we define the unambiguous protocol as
one that allows no error, our interpolating protocol allows a given number of
errors around the true value, but no more. One could say that it gives a certified
answer when the change point is measured. This means, it gives an answer
with a certificate that no more than certain errors are made. Unambiguous
discrimination would be a perfect certificate: no errors allowed. Minimum
error would be the worst certificate: any error is allowed. This protocol is
only possible because the set of states we are dealing with is ordered. We map
the complicated SDP of the protocol into a simplified version that reveals in
an easier manner valuable information. We obtain an analytical lower bound
on the average probability of error. As we mentioned above the order of the
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samples is important, however, this ordering does not necessarily have to be
related to time ordering. We illustrate this fact by addressing another problem
different from change point: the anomaly detection [SHCM18] which is also
ordered but the ordering is more related to the spatial distribution of the
quantum states. In both cases we have a problem with states that are in a
graph with a linear open topology (a chain).

1.5.2 Sequential Analysis

The second part of the thesis deals with sequential analysis, an area of research
in statistics that was born with the works of Abraham Wald from the half
last century [WW48]. We address this problem for the first time its quantum
version. We address the simplest problem: try to identify one of two hypotheses
from the statistics of the observed samples and stop as soon as given error
criteria are met. The approach taken here is different than that of what is
found in the quantum statistics literature. The number of samples is considered
a random variable, the aim is to minimize the average of this random variable.
Basically one defines a statistical test named Sequential Probability Ratio Test
(SPRT) and studies its statistical properties. The SPRT precisely minimizes
the average number of samples needed to certify an hypothesis within some
given error thresholds, it is therefore the optimal sequential test [WW48]. If
one compares the SPRT with other tests, for example we get a significantly
better performance with respect the Neyman-Pearson test [Wal73]. We derive
general lower bounds that can be achieved using quantum protocols.

At the end of the first publication of this section [MVHS+21], a question
relating unambiguous discrimination and online measurements was raised. It
turns out that the unambiguous protocol achieves the same average number of
samples with online measurements than with a global protocol in the zero-error
scenario. This fact instigates us to think about the study of unambiguous
discrimination of general sources of quantum states. For two hypotheses it
is equivalent to use online and global protocols [CY01], however for three
hypotheses the question becomes highly nontrivial. We study this case using
our knowledge of Gram matrices and semidefinite programming related to
previous works. This part contains two publications:

3. Quantum Sequential Hypothesis testing

Here we study the quantum version of sequential analysis by Wald. The idea
here is to change the merit function to minimum number of samples needed
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(as stated above). First we address the SPRT using qubits with a fixed POVM.
We observe that using sequential analysis one can get better performance with
respect to the average number of samples, when comparing with the optimal
deterministic strategy given by the quantum Chernoff bound [ACMnT+07].
Then we address a very general problem of hypothesis testing where we allow a
feedback on the information we get from measurements. This also implies that
any kind of quantum measurement strategy is allowed with this knowledge:
weak measurements, collective, etc. We do not solve this problem exactly as it
seems extremely challenging, however, we are able to give an ultimate lower
bound on the average number of samples needed in the asymptotic regime of
small errors. Finally we observe that in the case of pure states we can solve
the problem exactly because the optimal global protocol performance coincides
with the unambiguous local one. This motivates the following publication of
this thesis.

4. Online unambiguous identification of three symmetric hypotheses

If N samples of a state are given, for two hypotheses, the global unambiguous
discrimination protocol yields the same probability of error than a local pro-
tocol [CY01]. Is this the case for more hypotheses? The answer is negative,
however, there are interesting cases where the global unambiguous is equal
to the local protocol. In general, this is a nontrivial problem for more than
two hypotheses. We address a very simple discrimination problem with three
hypotheses, where the states form a symmetric ensemble. We parametrize this
set of states via the Gram matrix. We observe the regions where the probability
of error for online protocols give the same probability of error as the global
protocol. Our approach is that we do online measurements, a special class of
local operations. We also consider sets of states that are not linearly dependent
that become linearly independent when multiple samples are available.
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2
Preliminaries

The purpose of this chapter is to present some fundamental concepts that will
be used throughout the rest of the thesis. Also I will give my personal view of
the motivation of Quantum Information theory.

2.1 The Lobster & The Quantum

In Yorgos Lanthimos’ film “The Lobster” people are literally expelled from their
community if they cannot be in a romantic relationship [Int15]. If someone has
the misfortune of ending a relationship that person can go to a hotel where
people in the same disgraceful bachelor state is enforced to find a partner.In
case that people do not find a couple within 45 days, they are turned into an
animal of their preference forever. The protagonist of the movie mentions that
if such would be his case, he would like to be turned into a lobster. In other
aspects, the context of the movie is very similar to a contemporary country.

There are dissidents of this ruling system: they live isolated from the
community in the forest. They are idealists, they are strictly bachelor. Also, as
they reject companionship they have the mandate to do most things alone.The
main community hunts them and turns them into animals, one of the activities
of the people in the hotel is to hunt these dissidents.
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Can we learn a deeper lesson from this nonsense? Perhaps about freedom. A
free society will always contain dissidents of the ideal of a happy person. There
must be a place for “non-happy” ways of living. Whatever the intention of the
movie’s plot really is, one thing is clear, it creates a sensation of strangeness
and otherness with respect to the universe of the spectators of a contemporary
country. It contains sufficient basic elements to seem like a familiar setting,
however, essential elements are different, like the freedom of not having a
romantic partner. This seemingly small difference in the grand context of
affairs produces a very unsettling and just plain odd reality.

A similar sensation of oddness arises when trying to understand Quantum
Theory deeply. Quantum Theory poses a challenge to our knowledge of reality.
Reasonably or not, the fact that we take Quantum Theory as the fundamental
reality of our world asks for deep understanding. Quantum Theory presents us
a reality that follows specific rules. These rules are not so extravagant at first
glance, however they produce a weird world.

To assess this weirdness we can follow its rules in situations that are familiar
and learn something from its consequences. There is a big area of research
nowadays in Quantum Information Theory and technologies that follows these
inquiries. My point here is that another main scientific objective for developing
quantum technologies is to immerse oneself in the world that quantum theory
creates. Not only see the movie but kind of experience it.

In what follows, I will introduce the basic constituents from Quantum
Theory and some elements of Quantum Information theory. My exposition will
be closer to that of another classic book of Nielsen and Chuang [NC11]. I want
to notice the change of exposition strategy, the same concepts are translated
into succinct postulates. As if it is easier to see it as a “thinking system” rather
than just a necessary description of phenomena.

2.2 The postulates of quantum mechanics

2.2.1 Postulate 1: Quantum state

The basic assumption in Quantum Mechanics is that the state of every physical
system in the universe is described by a wave function [Gri17]. For a given
physical system there exists states which are represented by vectors |φ⟩ in a
Hilbert space H(C). This Hilbert space can have arbitrary dimension but in
this thesis we will restrict to Hilbert spaces of finite dimension.

Note that two states in a Hilbert space can be put in linear combination,
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and the result, as its definition demands, lies in the Hilbert space itself. This
seemingly simple fact gives rise to the phenomenon of quantum coherence,
which arises from the fact that wave functions which describe physical systems
can be superimposed. The usual classical theory supposes that states are one
or the other, but not both at the same time. The allegory by Schrödinger of a
cat that is in a superimposed state of being alive and being dead is one of the
first expositions of this phenomenon.

There is a very interesting discussion about the ontology of the quantum
state. What is a quantum state? Information about an unknown substrate?
Or the “thing-in-itself” [PBR12]? The most general quantum states that one
can consider are not the vectors |ψ⟩ but statistical mixtures. When there is
a classical uncertainty, described by a probability distribution of being given
one of several pure states. Therefore we will consider not only vectors |φ⟩ but
aggregates that convey an explicit ignorance. If we are given the state |φ0⟩
with probability η0 and the state |φ1⟩ with probability η1 = 1 − η0 then the
state

ρ = η0 |φ0⟩⟨φ0|+ η1 |φ1⟩⟨φ1| . (2.1)

is the one that describes our knowledge.

In general, states will be represented by linear operators in a (finite-
dimensional) Hilbert space that have the properties of being positive semidefi-
nite, ρ ≥ 0, and normalized, tr ρ = 1. We will call states of rank 1 pure and
any higher rank will be called a mixed state.

2.2.2 Qubits

The warhorse of quantum computation and information is one of the simplest
quantum states: a two level system usually called qubit. We are considering
then a two-dimensional Hilbert space which has a basis of orthogonal states
which we will denote {|0⟩ , |1⟩} and any state in this Hilbert space can be written
as |ψ⟩ = α |0⟩+ β |1⟩ with α and β complex numbers that fulfill |α|2 + |β|2 = 1.
This constrains the numbers α and β and we can write any qubit in terms of
two angles {θ, ϕ}. The parametrization therefore can be chosen such that

|ψ⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ , (2.2)

with θ ∈ [0, π) and ϕ ∈ [0, 2π). These pair of angles parametrize a sphere
of unit radius with n⃗ = (sin θ cosϕ, sin θ sinϕ, cos θ). In general, we can have
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Figure 2.1: Bloch sphere representation of qubits.

mixtures of qubits and any density matrix ρ can be written in a compact form

ρ =
1

2
(1+ rv · σ), (2.3)

with n⃗ as defined above, r ∈ [0, 1] is called the purity and σ = (σx, σy, σz) is a
vector of the traceless Pauli matrices. Observe that this forms a solid sphere
with points determined by the vector n⃗ and the length of the vector by r. See
Figure (2.1) for the representation of pure states in the so-called Bloch sphere.

2.2.3 Postulate 2: Unitary evolution

Time is inscribed into quantum theory as a real continuous parameter. The
states that we talked about evolve through time given some problem-specific
Hamiltonian H. Basically, this yields the Schrödinger equation:

iℏ
∂Ψ

∂t
= ĤΨ. (2.4)

This is equivalent to saying that the states evolve with unitaries:

|Ψ(t)⟩ = e−
it
ℏ Ĥ |Ψ0⟩ = U(t)|Ψ0⟩. (2.5)
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2.2.4 Postulate 3: Quantum measurements

Perhaps this is the most problematic postulate [WM09]. When a measurement
is performed in a system, the state of this system changes, it “collapses” into
another state. This is what is known as the Copenhague interpretation. There
is a large literature written with respect to this point. We will not enter in this
discussion. We will take this interpretation with its vagueness.

We need to define some operators in order to be able to talk about measure-
ments in quantum mechanics. For m = 1, 2, . . . , n let M̂m be a set of operators
that act on the Hilbert space H(C) of dimension d where we defined our states
|Ψ⟩. The set of operators cannot be arbitrary, it has to fulfill a completeness
property: ∑

m

M̂ †
mM̂m = I. (2.6)

A system described by a state |Ψ⟩ is described (after obtaining a measure-
ment measurement outcome m) by

|Ψ′⟩ = M̂m|Ψ⟩√
⟨Ψ|M̂ †

mM̂m|Ψ⟩
. (2.7)

Equation (2.6) implies that

∑

m

⟨Ψ|M̂ †
mM̂m|Ψ⟩ = 1. (2.8)

With ⟨Ψ|M̂ †
mM̂m|Ψ⟩ ≥ 0 [NC11] therefore we can assume that we have a

probability density function for the subscript m,

p(m) = ⟨Ψ|M̂ †
mM̂m|Ψ⟩. (2.9)

In general we will designate M̂ †
mM̂m = Êm and ask the completeness property

of the set (2.6). Also, we will ask the set of operators to be positive semidefinite
Êm ≥ 0.

2.2.5 Postulate 4: Aggregates or tensor products

We observe several independent systems in our universe. Quantum Mechanics
can consider the situation when there is more than one system at a given time.
However, a priori it is not evident how to do this. If we have n states of different
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systems {|Ψ1⟩, . . . , |Ψn⟩} the overall quantum state of the system aggregate is
given by [Gri17] its tensor product :

|Ψtot⟩ = |Ψ1⟩ ⊗ . . .⊗ |Ψn⟩. (2.10)

Usually the symbol ⊗ is omitted and we take the convention that the
juxtaposition of several quantum states denotes its tensor product.

2.2.6 Quantum entanglement

Let the state of two quantum particles be

|φ⟩ = |ψ1⟩|ψ2⟩. (2.11)

One might ask what is the most general state that describes both particles
at the same time. In general, Quantum Theory admits states that cannot be
written as a decomposition into tensor products of independent states, as in
Equation (2.11). This kind of states will be called entangled states.

In general, for mixed states, as considered above, we have that if a state
can be written as

ρ =
∑

ij

σi
Aσ

j
B (2.12)

then we say that ρ is separable. If ρ is not separable then we say that it is
entangled. Basically, entanglement is a phenomenon that arises in Hilbert
spaces of composite systems.

With this concept we are entering the weird world of Quantum Theory.
The states that are entangled have effects that puzzle the classical mind. This
is because the states that are entangled present correlations that are stronger
than those from classical distributions. To see the correlations one has to
think in terms of a task. It is simpler to see the case of Bell inequalities
for qubits [NC11]. For example, suppose that Alice and Bob have each two
classical random variables: Q,R and S, T respectively as in Figure (2.2), each
of which can yield the results ±1. The following quantity can be defined
QS +RS +RT −QT = (Q+R)S + (R−Q)T . It follows that (Q+R)S = 0
or (R − Q)T = 0, in either case QS + RS + RT − QT = ±2. Taking the
expectation value we can get the Bell inequality,

E(QS) + E(RS) + E(RT )− E(QT ) ≤ 2 (2.13)
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Figure 2.2: Schematic for Bell inequalities.

where E denotes expectation value. If the systems that Alice and Bob have is
quantum mechanical things can be different. For example, suppose each one
has a particle such that they share the entangled state

|ψ⟩ = |01⟩ − |10⟩√
2

. (2.14)

If they perform measurements of the following observables in terms of the Pauli
matrices Z,X:

Q = Z1 (2.15)

R = X1 (2.16)

S =
−Z2 −X2√

2
(2.17)

T =
Z2 −X2√

2
. (2.18)

We thus have
⟨QS⟩+ ⟨RS⟩+ ⟨RT ⟩ − ⟨QT ⟩ = 2

√
2. (2.19)

Here we have a clear numerical difference between the classical case and the
quantum one, because 2 < 2

√
2. This is an example of what we mean with

stronger correlations.
Observe that in general we can see this inequality as follows: optimize the

expectation of the quantity QS + RS + RT − QT over input states. Quan-
tum mechanics allows for states that give a larger expectation value of this
quantity. Often problems in quantum information consist in cost functions
that depend on quantum objects (states and measurements) that have to be
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optimized. Quantum mechanics offers the optimization over entangled states
and measurements.

From Postulate 1, observe that mixed states are positive semidefinite op-
erators. We observe also from Postulate 3 that measurements in general are
described by positive semidefinite operators. As seen in Equation (2.12) there
exists the notion of entanglement for these kind of operators. It is natural then
to ask for the structure of the measurement operators. It turns out that this is
a very rich question with deep implications. The measurements that can be
done with entangled operators yield different kind of information than those
with separable ones. In fact, usually when we optimize over measurements a
cost function, the optimal measurement turns out to be an entangled one. It
is possible, however, that in some cases, a separable one can yield the same
results [ABB+05].

We can make a classification of the possible measurements that can be
implemented in a given system. Suppose we have an N−partite quantum
system, with an underlying Hilbert space given by H = HA1 ⊗HA2 ⊗ . . .⊗HAN ,
which means, we have the parties A1, A2, . . . , AN each of which have a part of
the system.

First, the most general measurement that can be implemented in H could
be an entangled operator, i.e., an operator that does not have a decomposition
as in (2.12). We will call them entangled operators.

Then we can have operators that can have a decomposition of the form

Em = EA1 ⊗ EA2 ⊗ . . .⊗ EAN . (2.20)

with a suboperator on each Hilbert subspace. We will call this operator
separable.

Now, we can consider more restrictive measurements, where there is only
local operations and classical communication allowed between the parties
A1, A2, . . . , AN . This means that each party applies a complete measurement:∑

iE
Ai
i = 1, and that the outcomes of the separable measurements are shared

between the parties and this information is used to make measurements over
copies of states. We will call this kind of measurements LOCC (local operations
and classical communication) [CLM+14].

One could consider a special case of LOCC measurements where only a
series of measurements is allowed, which means, the system A1 is measured,
then the result is informed to the party that holds the system A2 to modify
its measurement apparatus and so on. This kind of measurements will be
called one-way LOCC. If, furthermore we ask that the measurement each party
applies is optimal at each step, we call these measurements online.
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Online measurements are different from LOCC when we consider the op-
timization on cost functions. LOCC would allow for communication between
parties A1, A2, . . . , AN and making measurements between. In contrast, online
measurements have to be optimal at each step. LOCC allows for suboptimality
in the measurements until the last measurement is made.
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3
Quantum state discrimination

In this chapter I include the basic mathematical tools and results that support
the relevance and validity of the articles presented in this thesis. Here we
will present a very fundamental task that will prove to be extremely versatile:
quantum state discrimination. This is an essential part of many tasks of
quantum information theory.

We have two agents: Alice and Bob. Alice has promised to give Bob a
quantum system prepared in a quantum state out of two possible ones. In
classical physics it is always possible in principle to distinguish two states 0
and 1. However, in quantum mechanics we can have two pure states which are
nonorthogonal and thus, not perfectly distinguishable.

Now, notice that Alice has promised one of two states, this means that Bob
will have in mind two possible states but knows that one state is the real one.
Bob prepares a measurement for figuring out which of these states have actually
been given. Notice here that the problem is defined by the set of hypothesis
states.

23



3.1 CHAPTER 3. QUANTUM STATE DISCRIMINATION

3.1 Classical hypothesis testing

Our task stems from the study of hypothesis testing. Once we define the
classical theory of hypothesis testing, the quantum part will appear naturally.

Suppose Alice gives Bob an apple. It would be very easy for Bob to tell if
the apple is red or yellow. Bob just looks at it (counting Fuji apples as red).
There are however relevant questions about complex systems where asking a
simple question can be more complicated. Take a district in Barcelona for
example, is it right wing or left wing? This is a relevant question for democracy
to work and it is non-trivial to answer in many cases (e.g. how to consider the
position of the people who is not “political”?).

To address this kind of non-trivial questions statistics gives us tools to extract
knowledge from the data that is available. A particular one is hypothesis testing.
The basic objective is to identify if a system follows one of several hypothesis
from a given set. In terms of probability, we frame it as the question that a
system follows one of several possible probability distributions.

We analyze the case of two hypotheses. The process is self-explanatory:
to answer the question of which of the hypotheses we believe as true we test
observed data. We can make a wrong guess of course, this is what makes this
problem interesting in the first place! We can therefore see the inference process
as a decision problem. An observer samples once from either distribution p0(x)
or p1(x). The outcome of the sampling will reveal something about the identity
of the distribution from which it was drawn.

For two hypotheses, let us call them H0 and H1 there are only two types of
errors, that we assess hypothesis H0 as true when is false which is called type-I
error or that we wrongly assess hypothesis H1 as true when is false which we
will call type-II error. We will associate the probabilities p(0|H1) and p(1|H0)
respectively to these errors. However, it is also useful to think of an average
error. If prior information is available, let’s say, that we know that H0 is true
with probability 0 ≤ η0 ≤ 1 and H1 with probability η1 then we can consider
the average Bayesian probability of error

Pe = η0p(1|H0) + η1p(0|H1). (3.1)

We still need a procedure to carry out a suitable guess from the possible
hypothesis. A natural way to establish a guess is to choose the most probable
hypothesis through a Bayesian updating process [Jay03]. Given an outcome x,

24



CHAPTER 3. QUANTUM STATE DISCRIMINATION 3.1

we update our estimate about an hypothesis as

p(0|x) = η0p0(x)

p(x)
=

η0p0(x)

η0p0(x) + η1p1(x)
. (3.2)

Where p(x) is the probability to have the outcome x. The Bayes estimate
is given by comparing the quantities η0p0(x) and η0p1(x). We can define the
Bayes’ decision function as follows,

δB(x) =





0, if η0p0(x) > η1p1(x)

1, if η0p0(x) < η1p1(x)

anything if η0p0(x) = η1p1(x).

(3.3)

One can prove that this decision method is optimal in terms of the error
probability in the sense that any other decision function would yield a larger
error probability i.e. Pe(δ) > Pe(δB) for δ ̸= δB [Fuc95]. We denote the
probability of error with respect to Bayes’ decision method as Pe.

Observe that in case that both hypotheses yield the same value then
the only possible guess is random. This rule tells us how to calculate the
error in the estimation as it is the minimum of the conditional probabilities
min{p(0|x), p(1|x)} as our guess corresponds to the hypothesis with the highest
probability. Observe that we have two hypotheses but the number of outcomes
can be arbitrary. Let us consider a l ∈ N outcome experiment, therefore the
probability of error is given by

Pe =
l∑

x=1

p(x)min{p(0|x), p(1|x)} (3.4)

=
l∑

x=1

min{η0p0(x), η1p1(x)}. (3.5)

Using the Bayes rule, we can update the priors with the information that we
obtain from samples. Therefore, the inference process can be iterated n times.
The estimation would obviously depend on the number of iterations. However,
notice that it always depends on the number of samples one considers. It
would be useful to relate probability distributions through a geometric distance
between them. Such a well-defined distance would not depend on the number
of measurements one takes, i.e. it would only depend on the distributions that
we consider.
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The dependence on the number of measurements will go away when we
consider the number of samples going to infinity. In this regime (large sample
size) it is intuitive that the probability of error decays exponentially and it can
be shown that the optimal exponent is given by the Chernoff bound [Che52].

3.1.1 Chernoff bound

The most natural scenario for testing is a symmetric one. Here we consider the
Chernoff case as a contraposition of the asymmetric discrimination one. We
repeat the Bayesian inference process N times and observe the probabilities we
obtain. Given the outcomes

x(N) = (x1, x2, . . . , xN), (3.6)

which consists on a vector of N outcomes. We therefore have two possible
distributions assuming one hypothesis or the other:

p0(x
(N)) = p0(x1)p0(x2) . . . p0(xN) (3.7)

p1(x
(N)) = p1(x1)p1(x2) . . . p1(xN). (3.8)

Using the inequality [Che52, Fuc95]

min{a, b} ≤ asb1−s, s ∈ [0, 1], (3.9)

in Equation (3.5) we obtain

Pe =
l∑

i=1

min{η0p0(x(N)), η1p1(x
(N))} (3.10)

≤ ηs0η
1−s
1

l∑

i=1

(
N∏

k=1

p0(xk)
sp1(xk)

1−s

)
(3.11)

= ηs0η
1−s
1

N∏

k=1

(
l∑

i=1

p0(xk)
sp1(xk)

1−s

)
(3.12)

= ηs0η
1−s
1

(
l∑

i=1

p0(xk)
sp1(xk)

1−s

)N

(3.13)

≤ min
s∈[0,1]

ηs0η
1−s
1

(
l∑

i=1

p0(xk)
sp1(xk)

1−s

)N

. (3.14)
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Therefore Pe(N) is upper bounded by the so-called Chernoff bound. We can
obtain a quantity that is independent of N that yields a notion of distance
between probability distributions. The probability of error when N → ∞ is
given by

Pe(N → ∞) ∼ e−NC(p0,p1), (3.15)

where we define the Chernoff distance as

C(p0, p1) ≡ − log min
s∈[0,1]

l∑

i=1

p0(i)
sp1(i)

1−s. (3.16)

3.1.2 Kullback-Liebler divergence

In contraposition to the Chernoff case, we could consider an asymmetric
distinction of hypotheses: we will choose H0 as true unless evidence convince us
that H1 is true. The Kullback-Liebler divergence (or relative entropy) D(p0||p1)
is a measure of the inefficiency of assuming that the distribution is p1 when
the true distribution is p0 [CT12]. This quantity compares also two probability
distributions, however in an asymmetric way. Therefore, it does not define a
distance in general. The relative entropy between two probability distributions
p0 and p1 is defined

D(p0||p1) =
∑

x

p0(x) log
p0(x)

p1(x)
, (3.17)

The Kullback-Liebler becomes important in hypothesis testing because of the
following theorem, called Stein’s Lemma [CT12]

Theorem 1. Let X1, X2, . . . , Xn be i.i.d.∼ Q. Consider the hypothesis test
between two alternatives, Q = p0 and Q = p1, where D(p0||p1) < ∞. Let
An ⊆ X n be an acceptance region for hypothesis H1. Let the probabilities of
error be

αn = pn0 (An) (3.18)

βn = pn1 (An), (3.19)

and for 0 < ϵ < 1/2, define

βϵ
n = min

An⊆Xn, αn<ϵ
βn. (3.20)

Then,

lim
n→∞

1

n
log βϵ

n = −D(p0||p1). (3.21)
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3.2 Minimum error quantum discrimination

As mentioned earlier in this chapter, Alice gives Bob a quantum system in a
state and Bob has to figure out which one out of the two promised states Alice
actually gave him.

First we shall examine the natural case of two hypotheses: ρ and σ. These
states can be pure or mixed. An important figure of merit to consider is the
average error an estimation process makes.

We will see the average error (3.1) when considering quantum systems and
measurements. First of all, we can write in general a pair of qubits in terms of
an orthogonal basis {|0⟩, |1⟩} as

|ψ0⟩ = cos θ|0⟩+ sin θ|1⟩,
|ψ1⟩ = cos θ|0⟩ − sin θ|1⟩. (3.22)

Recall that the possible states are given by |ψ0⟩ and |ψ1⟩ and a POVM is
given by a complete set of positive operators. We will optimize for 2-outcome
POVMs, E0 + E1 = 1 therefore we get the equation

Pe = η0⟨ψ0|E1|ψ0⟩+ η1⟨ψ1|E0|ψ1⟩, (3.23)

= η0 − tr [(η0 |ψ0⟩⟨ψ0| − η1 |ψ1⟩⟨ψ1|)E0]. (3.24)

Now, we know that any operator 0 ≤ E0 ≤ 1 will fulfill Equation (3.24).
However, knowing that we have a specific function we can ask for which
operator E0 is the average probability of error Pe minimized, which is the
optimization that we mentioned above. One can show that the minimum is
reached when E0 is a projector onto the subspace spanned by the eigenvectors
corresponding to the positive eigenvalues of the operator η0 |ψ0⟩⟨ψ0|−η1 |ψ1⟩⟨ψ1|
usually called the Helstrom operator.

As we have two pure states then this defines a two-dimensional space.
Without loss of generality we consider η0 ≥ η1, then one can calculate the
eigenvalues of this operator:

λ± =
1

2

(
η0 − η1 ±

√
1− 4η0η1 cos2 2θ

)
. (3.25)

then, from Equation (3.24) the minimum probability of error is given by

Pe =
1

2

(
1−

√
1− 4η0η1|⟨ψ0|ψ1⟩|2

)
. (3.26)
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Equation (3.26) is usually called the Helstrom bound [Hel76] and the Helstrom
measurement given in terms of the Helstrom operator, which achieves this
bound.

The minimum error measurement will sometimes indicate a state incorrectly.
We will see in the next section that protocols that make no errors are also
possible, albeit not always.

Square Root Measurement

The problem of quantum state discrimination can be generalized to the case
when we have more than 2 hypotheses. The general problem can be addressed
numerically but analytically in general it becomes highly complicated. In
fact, no general method has been found to solve minimum error state dis-
crimination analytically [Bae13]. Even the simple case of three states if no
symmetry is known among given states, no analytic solution is known. One
measurement that results very useful in this general setting is the Square Root
Measurement (SRM). It is a specific measurement over an arbitrary finite set of
states but its versatility earned the name of pretty good measurement [HW94].
Suppose we are given n states ρi with respective probabilities ηi. We define

ρ̄ =
n∑

i=1

ηiρi. (3.27)

Then the SRM can be defined as a POVM with elements

Ei = ηiρ̄
−1/2ρiρ̄

−1/2. (3.28)

It is clear that the operators Ei are positive semidefinite and form a complete
set

n∑

i=1

ηiρ̄
−1/2ρiρ̄

−1/2 = ρ̄−1/2ρ̄ρ̄−1/2 = 1. (3.29)

It is known that there are cases where this measurement is optimal [DPP15].
Also, it might be suboptimal but optimal in an asymptotic limit [HJS+96,
SBC+16].

The cases where the SRM is optimal are very symmetric ones, we will see
the condition for optimality in a following section (3.3.1).
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3.3 Unambiguous discrimination

Minimum error discrimination deals with the most unrestricted problem of
quantum discrimination in the sense that the only thing that it is asked is for
the probability of error to be minimal. However, we can ask for more restricted
problems that naturally arise. A very useful scheme is that of unambiguous
discrimination [BFF12].

For pure states we can obtain a measurement scheme that does not yield
erroneous answers, this means, it yields a conclusive answer if and only if
we have a linearly independent set [Che98]. This would suggest that we
have surpassed the minimum error scheme. However this scheme will succeed
perfectly with certain probability but can sometimes fail altogether and yield
no conclusive answer.

Let us see the simplest case of two hypotheses. For the case of two qubits,
given the states (3.22) we have the operators

E0 = a0(sin θ |0⟩+ cos θ |1⟩)(sin θ ⟨0|+ cos θ ⟨1|),
E1 = a1(sin θ |0⟩ − cos θ |1⟩)(sin θ ⟨0| − cos θ ⟨1|). (3.30)

We choose these operators so that ⟨ψ0|E1 |ψ0⟩ = ⟨ψ1|E0 |ψ1⟩ = 0 and with
0 ≤ a0, a1 ≤ 1. Therefore, if we get the outcome E0 we know that we had
the state |ψ0⟩ for sure and the same goes for the 1 outcome. The operators in
Equation (3.30) do not sum up to 1 so there is a positive semidefinite operator
that we need to add to fulfill the completeness requirement (2.6). We have
therefore an inconclusive outcome operator,

E? = 1− E0 − E1. (3.31)

Knowing this we can ask for the protocol that yields an inconclusive answer
with the smallest probability.

Normally the probability of success which is the probability that our mea-
surement scheme yields a correct answer will normally will be lower than that
of minimum error. The reason of this is that unambiguous is a very restricted
case of discrimination. It asks a lot from the measurement, that it yields no
error.

The probability to get the inconclusive outcome is given by

P? = η0⟨ψ0|E?|ψ0⟩+ η1⟨ψ1|E?|ψ1⟩ = 1− sin2 2θ(η0a0 + η1a1). (3.32)

The optimal operator E? is found when P? is minimized. The parameter θ is
fixed, as are p0 and p1. What is left to optimize are the parameters a0 and
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a1 under the constraint that they are positive and that the operator Pi? ≥ 0.
For equal a priori probabilities p0 = p1 = 1

2
, the minimum probability of

unambiguous is given by P? = cos 2θ = |⟨ψ0|ψ1⟩| with the parameters and
operator,

a0 = a1 =
1

2 cos2 θ
, (3.33)

E? = (1− tan2 θ) |0⟩⟨0| . (3.34)

Now, unambiguous discrimination is also possible for sets of mixed states.
However, the condition is stronger, it needs the support of the states to be
non-identical. However, this is a hard condition to have experimentally [ZFY06].

3.3.1 Gram Matrix

The Gram Matrix is a mathematical tool that is very useful for decoding
problems of discrimination of pure states.

Although the concept of Gram matrix is very general as it is defined for any
vector space with inner product (normally denoted ⟨·, ·⟩) we will focus on finite
dimensional Hilbert spaces H. Suppose we have a set of states {|ψ1⟩ , . . . , |ψn⟩}
in a Hilbert space of finite dimension H. We define a Gram matrix for this set
of vectors component-wise as [HJ12]

Gij = ⟨ψi|ψj⟩, (3.35)

which is an n×n matrix with complex entries. There are interesting properties
of this matrix as it condenses properties of the whole set of states. To illustrate
some of these properties we have the following theorem,

Theorem 2. Let {|ψ1⟩ , . . . , |ψn⟩} be states in a Hilbert space H and let G =
[⟨ψj|ψi⟩]mi,j=1 then,

• G is positive semidefinite if and only if the states {|ψ1⟩ , . . . , |ψn⟩} are
linearly independent.

• rankG = dim span {|ψ1⟩ , . . . , |ψn⟩}.
The proof can be found in [HJ12].
Also, observe that if we have positive semidefinite matrix A ∈Mm then we

could see the square root matrix A1/2 as a square matrix of columns A1/2 =
[|ψ1, . . . , ψn⟩] and therefore (A1/2)†A1/2 = A and [A]ij = ⟨ψi|ψj⟩. Therefore,
every positive semidefinite matrix is a Gram matrix.
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The reason we introduce the Gram matrix here is that it is a useful tool not
only to check linear independence of a set but also to study multi-hypotheses
discrimination problems. It contains all the information necessary for solving a
discrimination problem with pure states. As it only depends on the overlaps
Gij = ⟨ψi|ψj⟩ it is therefore independent of the bases of the states |ψi⟩.

The square root measurement is generally considered to be a suboptimal
measurement that “scales well” with a growing number of hypothesis n [HJS+96].
However, there are cases when this measurement is optimal. They have to be
very symmetric as we will see.

We have the following theorem by Dalla Pozza et. al for linearly independent
sets of states [DPP15].

Theorem 3. Given a Gram matrix G and its square root G1/2 that are block
diagonal, which means G = G1 ⊕ . . .⊕Gn then the square root measurement
is optimal if and only if the square root G

1/2
i of each block has equal diagonal

entries.

Basically the SRM needs a very uniform set of states. A known example
for which the SRM is the optimal measurement is one that has geometrical
uniform symmetry [DPP15]. Actually one can see that the more symmetric
the better from the following theorem that is related to the Change Point
Problem [SBC+16],

Theorem 4. Let {|ψi⟩}nk=1 be a linearly independent set of states with the
Gram matrix Gij = ⟨ψi|ψj⟩. The maximum probability of correctly identifying
a state drawn uniformly at random from the set {|ψi⟩}nk=1 satisfies the bounds

Pmax ≥
(
tr
√
G

n

)2

(3.36)

and

Pmax ≤
(
tr
√
G

n

)2

+
√
λmax ∥ q− u ∥1, (3.37)

where λmax is the maximum eigenvalue of G, q = {qk} is defined as qk :=
(
√
G)kk/tr [

√
G] and u = {uk} is the uniform distribution, and ∥ · ∥ denotes

the trace norm.

The idea behind this theorem is that using a decomposition of the Gram
matrix one can observe the dependence of the probability of success on its square
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root matrix. However, in general it also depends on a unitary transformation
that, when the SRM is optimal, it turns out to be the identity.

What this last theorem tells us is that the closer to a uniform distribution
the diagonal of G1/2 gets, the closer it is to the optimal value of Pmax.

Although the Gram matrix is useful to study some cases of multi-hypotheses
pure state discrimination, except for very special and symmetric cases there is no
way to address this problem [Bae13]. However, we can investigate this problem
using a very powerful mathematical concept: Semidefinite programming. In
the next section we review this useful technique.

3.4 Semidefinite programming

Semidefinite programming is a very powerful tool to address optimization
problems in quantum information theory. This technique has advantages for
understanding optimization problems and also it is very useful for numerical
calculations.

A semidefinite program (SDP) is a convex optimization problem. It is
closely related to linear programming (LP) [BV04]. LP is an optimization
problem over a polytope that is given by the possible solutions of a linear
system of inequalities. Linear programs use vectors as the variable to optimize.
Semidefinite programs, generalize this kind of problems to positive semidefinite
matrices. There are linear constraints for SDPs as for the LPs; the difference
with SDPs is that the constraint to positive semidefinite operators is not linear
in the components of the matrix variables. Nevertheless, there exist algorithms
to solve SDPs in polynomial time [GB14].

We define SDPs following Watrous [Wat18],

Definition 1. A semidefinite program is a triple (Φ, A,B) where

• Φ ∈ T (X, Y ) is a Hermiticity-preserving map.

• A ∈ Herm (X) and B ∈ Herm (Y ) are Hermitian operators.

for some choice of complex Euclidean spaces X and Y . The final part associated
with the triple (Φ, A,B) is two optimization problems called primal and dual,
as follows:
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maximize ⟨A,X⟩
subject to Φ(X) = B,

X ∈ Pos(X).

(3.38)

minimize ⟨B, Y ⟩
subject to Φ∗(Y ) ≥ A,

Y ∈ Herm(Y ).

(3.39)

There are several remarks of the previous definition: the ⟨·, ·⟩ denote an
inner product for operators, Pos(X) denotes the set of positive semidefinite
operators and Φ∗(Y ) is the adjoint map of Φ(X), which is the unique map that
fulfills [Wat18]

⟨Φ∗(Y ), X⟩ = ⟨Y,Φ(X)⟩. (3.40)

Eq. (3.38) is normally called the primal problem and Eq. (3.39) is called the
dual problem. Now, the interesting part of the semidefinite programs defined
above is their interrelation. Finding the optimal values might be a challenge
but it will be useful to study the solutions of both programs.

Any operator that fulfills the constraints of Eq. (3.38), which means the
set A defined as

A = {X ∈ Pos(X) : Φ(X) = B}, (3.41)

is said to be primal feasible. In the same vein operators in the set

B = {Y ∈ Herm(Y ) : Φ∗(Y ) ≥ A}, (3.42)

is said to be dual feasible. Analogously, we can define the functions X → ⟨A,X⟩
and Y → ⟨B, Y ⟩ as the primal and dual objective functions. The primal
optimum and dual optimum are the values that satisfy,

α = sup
X∈A

⟨A,X⟩ (3.43)

β = inf
Y ∈B

⟨B, Y ⟩. (3.44)

The values α and β may be infinite or finite.
Both the primal and dual programs solve, under certain circumstances, the

same problem. Now, the having two versions of the same problem is helpful
because we have two ways to observe the same problem. There are two types of
correspondence (usually also called duality) between the SDPs, one weak and
one strong, which correspond to the following proposition and theorem [Wat18]:

Proposition 1. For every semidefinite program (Φ, A,B) it holds that α ≤ β.
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This implies that every dual-feasible operator Y ∈ B yields an upper bound
of ⟨B, Y ⟩ on the optimal value α. More generally,

⟨A,X⟩ ≤ α ≤ β ≤ ⟨B, Y ⟩, (3.45)

for every X ∈ A and Y ∈ B. The condition α = β is known as strong duality.
Strong duality does not hold for every semidefinite program but it does for
most of them [Wat18].

Semidefinite programming is a very useful tool to study quantum state
discrimination [EMV03, Eld03]. We can translate the problem into a SDP
easily. We observe that the trace can be regarded as an inner product, therefore,
for minimum error, we can write the programs

maximize tr [ρE]

subject to
∑

iÊi = 1,

Êi ≥ 0 ∀ i.
(3.46)

minimize tr [Y ]

subject to Y ≥ ρi ∀ i,
Y ≥ 0.

(3.47)

where we encode the hypotheses states into a block matrix as

ρ =




ρ1 0 . . . 0
0 ρ2 . . . 0
...

...
. . .

...
0 0 . . . ρN


 . (3.48)

Analogously the POVM elements are arranged in a block matrix as well:

E =




Ê1 0 . . . 0

0 Ê2 . . . 0
...

...
. . .

...

0 0 . . . ÊN


 . (3.49)

Notice that the dual program yields the Holevo conditions of optimality in the
constraint Y − ρi ≥ 0 ∀ i [Hol73]. We can write a correspondent program for
unambiguous discrimination, in that case the POVM operators are essentially
fixed. The only thing that remains to be optimized is a scalar factor as we will
see next. It is nice to write it for pure states only as we can make use of the
Gram matrix and SDP [SCMnT17].
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Suppose we have N linearly independent pure states {|ψk⟩}Nk=1. If we have
an orthonormal basis {|i⟩} of dimension N we can define the operator

R =
∑

k

|ψk⟩⟨k| . (3.50)

We observe that therefore,

G =
N∑

i,j=1

⟨ψi|ψj⟩ |i⟩⟨j| = R†R. (3.51)

The inverse of R exists because the set is linearly independent and is given by

R−1 =
N∑

k=1

∣∣∣k⟩⟨Φ̃k

∣∣∣ , (3.52)

where ⟨k|R−1R|l⟩ = ⟨Φ̃k|ψl⟩ = δkl and |Φ̃k⟩ is not normalized in general. From
the above considerations we observe that the POVM satisfying the required
characteristics for unambiguous discrimination is one given by

Ek = γk

∣∣∣Φ̃k⟩⟨Φ̃k

∣∣∣ . (3.53)

We can call the 0 ≤ γk ≤ 1 efficiencies [SCMnT17]. Observe that if the a priori
probability distribution of the hypotheses is given by p(i) then the probability
of success is given by Ps =

∑N
k=1 p(k)γk. If we take the diagonal matrix given

by ΓD = diag{γ1, γ2, . . . , γN}, we can transform the condition of having the
ambiguous result positive

E? = 1−
N∑

k=1

γk

∣∣∣Φ̃k⟩⟨Φ̃k

∣∣∣ , (3.54)

by multiplying by R† from the left and R from right into a very simple equation.
We can therefore obtain the following (primal) SDP,

maximize Γ tr [Γη]

subject to G− ΓD ≥ 0,

Γ ≥ 0.

(3.55)
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The dual program is thus,

minimizeZ tr [GZ]

subject to Z ≥ η,

Z ≥ 0,

(3.56)

where η = diag{p(1), p(2), . . . , p(N)}, p(i) is a probability distribution and G
is the Gram matrix formed by the hypotheses.

We have treated the problem in general for a large (finite) set of states.
However, we can still have interesting consequences in the two-state case. We
can have many copies of the states and the states can be mixed. In this situation
we need a characterization which requires sophisticated (however standard)
tools that we present in the next section.

3.5 Many qudits

There are useful representations of the state ρ⊗N . There is a particular decom-
position that comes from using representation theory. It was introduced in
the context of purification and estimation of qubits [CEM99, BBG+06]. It is
also used in learning protocols such as [SCMTB12]. For pure qubits one has
the Clebsch-Gordan decomposition in SU(2) which gives us a basis for sum of
angular momentum. More generally, we have density matrices, which is the
case we review here. Basically, what we do next is investigate the Hilbert space
of the aggregate of copies of qubits. We observe that when we consider N
copies the collective information is distributed in a particular way given by the
decomposition at hand. Then, we can access the information by implementing
general quantum measurements.

In particular, using representation theory one can write the product of 1
2

spaces in terms of invariant subspaces

(
1

2

)⊗N

=
⊕

j,α

j(α), (3.57)

where j = 0(1/2), . . . , J = N/2 for even (odd) N , and α labels the different
equivalent irreducible representations j. The density operator ρ⊗N written in
the invariant subspaces can be expressed in the block-diagonal form

ρ⊗N =
⊕

j,α

ρ
(α)
j , (3.58)
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. . .

. . . . . .

N/2− j columns 2j columns

Figure 3.1: A Young diagram with N boxes.

where ρ
(α)
j represents the block associated with the subspace j(α).

The explicit form of the blocks can be easily obtained by analysing the
Young diagrams that can be constructed with N boxes, one for each qubit as,
for example, the one shown in Figure (3.1). There will be as many different j
as Young diagrams.

Specifically, what this means is that we can write the tensor product of n
qubits as

ρ⊗n =
∑

j

pnj ρj ⊗
Ij

νnj
. (3.59)

What happens is that the subspaces repeat each other certain number
of times. We will call multiplicity the number of times a subspace repeats
itself. We write j = 0(1/2), . . . , n/2 if n is even (odd), Ij is the identity in the
multiplicity space Cνnj . The multiplicity νnj is given by

νnj =

(
n

n/2− j

)
2j + 1

n/2 + j + 1
. (3.60)

The multiplicity can be calculated from the Young tableaux of a given number
of qubits [SN17].

The normalized state ρj which is in a subspace Sj = span {|j,m⟩} of
dimension 2j + 1 = d2j is

ρj = Us

(
j∑

m=−j

ajm[j,m]

)
U †
s , (3.61)
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with

ajm =
1

cj

(
1− r

2

)j−m(
1 + r

2

)j+m

(3.62)

cj =
1

r

{(
1 + r

2

)2j+1

−
(
1− r

2

)2j+1
}
, (3.63)

with this
∑j

m=−j a
j
m = 1 and we use the notation [j,m] ≡ |j,m⟩⟨j,m|. We have

that Us is given by a rotation in SU(2) which are given by the Wigner matrices.
If we measure on the various subspaces Sj we will have the state ρj as posterior
state with probability

pnj = νnj cj

(
1− r2

4

)n/2−j

. (3.64)

3.5.1 Asymptotic quantum relative entropy

A particular application of the structure of an aggregate of states will be to
see that the quantum relative entropy can be reached asymptotically in the
number of copies. This becomes useful in asymmetric quantum discrimination.

Umegaki defined a relative information quantity between two states ρ and
σ as

D(ρ||σ) = tr [ρ(ln ρ− lnσ)]. (3.65)

This concept was introduced in 1962 [Ume62]. It is an analogue with the
Kullback-Leibler relative entropy between probability distributions,

D(p||q) =
∑

x

p(x) log
p(x)

q(x)
. (3.66)

This also has been named divergence as it is a kind of distance between
probability distributions. However, it is not a distance because it is not
symmetric as in general D(p||q) ̸= D(q||p). Given a POVM {Ex} and the
states ρ and σ one would have two probability distributions and therefore we
define a Kullback-Liebler relative entropy for quantum systems dependent of a
POVM as

DEn

(ρ||σ) =
∑

x

tr [ρEx] ln

(
tr [ρEx]

tr [σEx]

)
. (3.67)

The quantum relative entropy defined in (3.65) is an upper bound to any
Kullback-Liebler divergence obtained this way [CT12].

39



3.5 CHAPTER 3. QUANTUM STATE DISCRIMINATION

Nevertheless, the quantum relative entropy can be attained asymptotically
specifically, it can be shown as a theorem [Hay01]:

Theorem 5. Let k be the dimension of H and let σ be a state on H. Then
there exists a POVM Mn on the tensored space H⊗n which satisfies

D(ρ||σ)− (k − 1) log(n+ 1)

n
≤ 1

n
DMn

(ρ⊗n||σ⊗n) ≤ D(ρ||σ) ∀ ρ. (3.68)

A measurement that achieves this behavior comes from knowing the de-
composition of the tensor product ρ⊗n into irreps. In the qubit case it means
to measure the whole spin of the aggregate and then the projection into the
z-axis [Hay01].

Therefore, the quantum relative entropy is defined asymptotically, as when
n→ ∞. This means, that it is a quantity that tells us the rate of the error in
the limit of many copies. For the Sequential Analysis article [MVHS+21] we
are also in this asymptotic limit and the quantum relative entropy naturally
appears as the rate of the average number of copies needed when the error
rates are asymptotically small.
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“In economics, things take longer than you think,
and then they happen faster than you thought
they could.”

— Rüdiger Dornbusch

4
Quantum detection in time I

Here we introduce the problem of Change Point detection from a quantum
mechanics perspective. This problem originates classically only considering
the statistics of a source; we will only see some aspects of the classical version
of this problem. We will center the exposition of the Change Point problem
to the quantum case as it is simple enough. Basically, the whole problem
stands in a phenomenological point of view, which means, that we are given a
black box source that we want to characterize from its outputs and nothing
more. However, minimal information is given about the source: we know that
it produces a base state |0⟩ and, suddenly, produces another state |ϕ⟩ which
has nonzero overlap with the original state, i.e. ⟨0|ϕ⟩ = c ̸= 0.

What we have then is a machine that changes the state it produces. The
problem then is, having N states produced by this kind of machine, figure out
when does the change happen. Our task for detection is to devise the best
possible measurement apparatus to figure out the position of the change in a
sample of N particles in the given states.

The problem can be cast as an N -hypotheses discrimination problem when
we write each hypothesis global state of N particles as

|ψk⟩ = |0⟩⊗k−1 |ϕ⟩⊗N−k+1 , (4.1)

which would mean that the change happens at position k. It is very convenient
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Source
Online detector

Global detector

φ φ φ 0 0 0 0 0

C.P.

Figure 4.1: Schematics of the Change Point problem.

to write this problem in terms of its Gram matrix, as defined in section (3.3.1).
Observe that

⟨ψl|ψk⟩ = c|k−l|. (4.2)

Therefore, this Gram matrix has a very specific form.

G =




1 c c2 . . . cN−1

c 1 c . . . cN−2

c2 c 1 . . . cN−3

...
...

...
. . .

...
cN−1 cN−2 cN−3 . . . 1




In Figure (4.1) we have a depiction of two cases of the Change Point problem.
The first one is with an online detector and the most general case that considers
the sample of N outcomes as a whole. Now, what is the optimal measurement
that we are capable of getting to discriminate the hypotheses? For a given
sample size N we can observe that the square root measurement is a pretty
good one and tends to the optimal when N → ∞. Using theorem (4) from
section (3.3.1) we can get the lower bound

Pmax ≤ (tr
√
G/n)2 + 4

(
1 + c

1− c

)3/2
1

n1−ϵ
, (4.3)

where ϵ > 0 is an arbitrary constant and
√
G denotes the square root matrix of

G [SBC+16]. This is the protocol without any constraint, which corresponds to
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doing a Minimum Error protocol. The case when the protocol is unambiguous
has also been studied [SCMnT17]. In the unambiguous case, the problem is
highly constrained as the POVM elements are fixed with the exemption of an
overall numeric factor which can be optimized.

In this thesis, it will be very important to study the semidefinite program
associated with the unambiguous discrimination problem. From the study of
this program we can get more information from the output of a Change Point
machine. The SDP for unambiguous discrimination was introduced in section
(3.4).

4.1 Online strategies for exactly identifying a

quantum change point

After N outputs of the machine, the result of unambiguous detection of the
Change Point using the SDP (3.55) gives an answer with global measurements
which means that one needs to consider in principle the whole sample of N
outputs as in Eq. (4.1). Notice that Figure (4.1) suggests that the change
point could also be detected in an online way. In the first publication we asked
how well optimal online strategies compare to the optimal global one. The
POVM elements Ei ∈ H⊗N of the optimal measurement can be entangled
operators. It is in fact nontrivial to differentiate when an entangled operator
has an advantage over a protocol that has access only to LOCC [CLM+14].

The global unambiguous protocol is an N -hypotheses discrimination prob-
lem. However, the LOCC measurement consists on a local two-outcome POVM.
In either case, the POVM operators are fixed and we have to optimize the
scalar weights that we assign to them. The LOCC protocol is an optimal two
outcome unambiguous discrimination one at each step, what is not trivial is
how to modify optimally the priors and the weights of the POVM elements
after each step. We find the optimal priors after each measurement. Notice
that it is by no means obvious a priori that the online two-outcome protocol
should coincide to the global N -outcome one.

However, the result here is that, in fact, the unambiguous version of the
change point problem is one of the particular instances where there is no gain
with an entangled POVM over an online one for an overlap of the states in the
interval [0, 1/2]. Outside this range the online protocol does very well but not
optimally. This means, the optimal protocol is also implementable in an online
fashion in a wide range of overlaps which is very convenient in the practical
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sense. Notice here that a protocol being online is a stronger requirement than
being a local one as it requires optimality at each step.

Outside the discussed interval, i.e. c > 1/2, the problem is analyzed for
a fixed local strategy, which means, the weights do not change after each
measurement. It is found that this strategy is optimal asymptotically in the
number of copies.

4.2 Certified answers for ordered quantum dis-

crimination problems

The other question that we address here concerns the implicit order of the
set of states of the change point problem. It turns out that one can use this
knowledge to make an analysis of the quality of the answers that a measurement
protocol can yield.

Here we return to a global setup like that of Eq. (3.55). What happens is
that the unambiguous protocol has also a spatial coordinate for a special kind
of problems. There is a one-to-one relation between the states and the possible
position of the change point. If we take the set of N states of an output of a
machine ordered in a line then there is a concrete sense of the position of the
first altered state |ϕ⟩.

The unambiguous protocol asks for a POVM that makes no mistake in
the position of the change point. We can ask for a less restrictive protocol by
modifying the error function. We make explicit use of the spatial relationship
of the hypotheses states. The modified error will be a cost function that for
the change point at hypothesis k it assigns zero cost to erroneously guessing
that the change point happened at positions k+1 or k− 1. All other erroneous
hypotheses are not allowed (or have an infinite cost). The protocol thus changes
and one can obtain a higher probability of success in this scheme.

After going away from the known unambiguous protocol by one position,
we can then ask for cost functions that allow errors of length 2 and more. We
define the SDP for these cases until we allow all possible errors, which coincides
with the minimum error problem. These SDPs yield a “certified answer” in
the sense that they allow a constrained amount of errors for the change point.
These kind of constrictions are illustrated in Figure (4.2).
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Figure 4.2: Types of errors considered by our schemes.

The protocol that we introduce is more related to the error-margin proto-
cols [HHH08, SBCMnT13], however, here we only deal with position instead
of limits on the admissible probability of making an error. The protocols that
we introduce generalize the SDP in Equation (3.55).

Having the problem in an SDP form is useful not only for numerical
calculations but also because we can get theoretical insight for an analytical
solution. In our case, the insight we get is that if one knows the solution to the
minimum error protocol (where all errors are allowed) one can get a nontrivial
lower bound on the general solution for the SDP. The trick is to give a more
restrictive auxiliar SDP. This auxiliar SDP is not optimized, but a feasible
solution is given, therefore we get a lower bound on the original problem. This
is a very general method that applies to any ordered problem.

An important aspect of the change point problem is that it is an ordered
one. Therefore we could consider problems that are ordered in another sense.
Here, we also take the example of the Anomaly Detection problem, which
considers an array of states that does not necessarily imply time ordering. The
Anomaly Detection problem is like the change point problem just that when
the machine produces the state ϕ, the next state it produces is 0 again as all
the following ones. We also obtain an analytic lower bound to the probability
of success in this problem.
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Online strategies for exactly identifying a quantum change point
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We consider online detection strategies for identifying a change point in a stream of quantum
particles allegedly prepared in identical states. We show that the identification of the change point
can be done without error via sequential local measurements while attaining the optimal performance
bound set by quantum mechanics. In this way, we establish the task of exactly identifying a quantum
change point as an instance where local protocols are as powerful as global ones. The optimal online
detection strategy requires only one bit of memory between subsequent measurements, and it is
amenable to experimental realization with current technology.

I. INTRODUCTION

The ability to process streaming data on-the-fly and
promptly detect changes in trends has become a most
desirable feature of modern data-analysis algorithms.
Change point detection is a vast branch of statisti-
cal analysis [1, 2] devoted to techniques for uncovering
abrupt changes in the underlying probability distribution
that generates a stream of stochastic data. Applications
are far-reaching, including quality control [3], medical di-
agnosis [4], and robotics [5]. Generically, there are two
distinct approaches for detecting change points: offline
strategies that require availability of a complete time se-
ries of data, and online strategies that are able to pro-
cess data sequentially. Naturally, having access to the full
data history of a given stochastic process typically results
in higher change-point identification rates. On the other
hand, online strategies enable real-time decision making,
are more versatile, and require less memory. These are
most relevant in machine learning, for devising online al-
gorithms with effective mechanisms to address learning
in the context of non-stationary distributions, a problem
known as concept drift [6].

The first extension of the change point identification
problem, in its simplest formulation, into a quantum
setup was recently introduced in Refs. [7, 8]. The prob-
lem can be stated as follows. A source assumed to pre-
pare a sequence of quantum particles in identical states
suffers a sudden alteration at some unspecified point, af-
ter which the particles are prepared in a mutated state.
Given a sequence of particles, one aims at detecting when
the mutation took place. In the most fundamental set-
ting, that we also consider here, the initial and final states
are assumed to be pure and known and, for a given se-
quence of length n, all potential positions of the change
point in the sequence are expected to happen with equal
probability. In Ref. [7], the minimum probability of erro-
neously identifying a quantum change point and a strat-

∗ gael.sentis@uni-siegen.de
† esteban.martinez@uab.cat
‡ ramon.munoz@uab.cat

egy that achieves it were obtained. This optimal strategy
consists in a quantum measurement acting coherently on
the given sequence of n particles. It was also shown that
a fairly general class of online strategies, based on sequen-
tial adaptive measurements on each individual quantum
particle, underperform the optimal protocol, and strong
numerical evidence that this is the case for all online
strategies was provided. The experimental implementa-
tion of adaptive online strategies for change point detec-
tion has been very recently demonstrated [9]. In contrast,
Ref. [8] addressed the quantum change point problem
from a different approach: when no identification errors
are allowed. The identification protocol then has two pos-
sible outcomes, either a correct answer or an inconclusive
one [10], and optimality means achieving a minimal rate
of inconclusive outcomes. This scenario covers situations
where, after the identification of a change point, a re-
sponse action shall be taken only in conditions of absolute
certainty. The optimal procedure and its associated opti-
mal success probability were derived analytically for any
length n and arbitrary states [8]. Again, this optimal pro-
tocol would in principle require a coherent quantum mea-
surement over the full sequence of particles, and hence
also quantum memories to store them, which may render
the protocol impractical in some scenarios. In this pa-
per, we look into online strategies for exactly identifying
a change point in streaming quantum data. Some simple
online protocols were already considered in Ref. [8] and
shown to significantly underperform the optimal global
protocol. Here, we deepen the analysis and address more
general online strategies by allowing classical communi-
cation between local measurements. Contrary to our ini-
tial conjecture [8], we find the striking result that there
is an online strategy that does achieve optimal perfor-
mance up to a critical value of the overlap between the
reference and mutated state. We also obtain that only
one bit of memory is required at each measurement step
to achieve optimality: it is enough to know whether the
previous result was inconclusive. Our results hence im-
ply that the exact optimal identification of a quantum
change point is a readily implementable task with cur-
rent technology, thus prone to integration within diverse
quantum information processing protocols.
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We begin by setting the notation and briefly review-
ing the results for the optimal (global) strategy in Sec-
tion II. Then, we turn to online strategies in Section III
and present our core results. We show that these pro-
vide optimal performance in a given range of the overlap
parameter. Beyond this range, we show that the best
online strategy is, albeit suboptimal, very close to opti-
mality. We finish in Section IV with a short discussion.

II. OPTIMAL GLOBAL STRATEGY

Let us denote by |0〉 the default state, |φ〉 the mu-
tated state, and c = 〈0|φ〉 their overlap. Without loss of
generality, we take c real and non-negative. Given a se-
quence of n particles, the change point identification cor-
responds to identifying a state within the set of equally
likely source states {|Ψk〉}nk=1, where

|Ψk〉 = | 0 . . . 0︸ ︷︷ ︸
k−1

φ . . . φ︸ ︷︷ ︸
n−k+1

〉 (1)

is associated with the change point occurring at position
k. A strategy that unambiguously identifies the correct
source state is characterized by a positive operator valued
measure (POVM) with n+ 1 elements {El ≥ 0}nl=0. The
outcomes l = 1, . . . , n detect without error each possible
source state, i.e., the corresponding POVM elements ful-
fill 〈Ψk|El |Ψk〉 = 0 for k 6= l, and the remaining element
E0 = 11 −∑n

k=1Ek ≥ 0 corresponds to the inconclusive
outcome. Since the source states (1) are linearly inde-
pendent, it is possible to find a set of orthogonal states
{|Φ̃k 〉}nk=1 such that 〈Φ̃l|Ψk〉 = δkl (the tilde indicates
that these states are not normalized in general). These

states can be compactly written as |Φ̃k 〉 = Ω−1 |Ψk〉,
with Ω =

∑
k |Ψk〉〈Ψk| , where the inverse Ω−1 has to be

understood in the pseudoinverse sense [12] if necessary.
Then, the POVM elements of the unambiguous measure-
ment simply read El = γl|Φ̃l〉〈Φ̃l|, l = 1, . . . , n, where the
parameters 0 ≤ γl ≤ 1 are the conditional success proba-
bilities of identifying each source state. We will refer to γl
as efficiencies [13]. The success probability of identifying
a change point without error is given by Ps = 1

n

∑n
k=1 γk,

and the efficiencies γk, the only free parameters left to
be optimized, are constrained by the condition E0 ≥ 0.

The optimal efficiencies, up to a certain critical value
c∗ of the overlap, are [8]

γn(k) =

n∑

j=1

(−c)|k−j| , k = 1, . . . , n , (2)

where we have explicitly included the dependence on the
number n of particles and written γk as γn(k). The cor-
responding optimal success probability reads

Ps =
1

n

n∑

k=1

γn(k) =
1− c
1 + c

+
1

n

2c [1− (−c)n]

(1 + c)2
. (3)

This expression is valid in the range 0 ≤ c ≤ c∗, where
c∗ ≈ (

√
5−1)/2 is determined by the equation γn(2) = 0.

In the rest of the range, c∗ ≤ c ≤ 1, the optimal efficien-
cies and success probability read [8]

γ′n(k) = γn(k)− γn(2)
(−c)|k−2| + (−c)|n−k−1|

1 + (−c)n−3
(4)

and

P ′s =
1

n

n∑

k=1

γ′n(k) = Ps −
2

n

γ2
n(2)

1 + (−c)n−3
, (5)

respectively.

III. ONLINE STRATEGIES

The optimal solution, comprised by Eqs. (3) and (5), in
principle requires a global measurement on the whole set
of n particles that may be infeasible to implement in prac-
tice. It is therefore of interest to elucidate whether the
task can be achieved with online strategies that act lo-
cally on each particle, possibly assisted by classical com-
munication between measurements, and how does their
performance compare to the optimal one. Such strategies
are far easier to implement in practice, and, addition-
ally, would allow for the detection of a change point in
a stream of quantum particles as soon as it occurs. We
will show that, quite extraordinarily, there is a simple
online protocol that performs optimally for 0 ≤ c ≤ 1/2
and needs to store only the outcome of the last measure-
ment at each step. In this overlap range, this result holds
true for sequences of arbitrary length n. For c > 1/2 the
best online protocol does not attain the optimal success
probability, although it is remarkably close.

A change point at position k can be exactly identified
by a local protocol only if there are two successive unam-
biguous detections: |0〉 at position k− 1, followed by |φ〉
at position k. For the end-point case k = 1 one only re-
quires the detection of state |φ〉 at the first position, while
for the last change point position, k = n, detecting |0〉 at
position n − 1 suffices since it is assumed that a change
point has always occurred and, hence, the state of the
last particle is necessarily |φ〉 [? ]. To lighten the presen-
tation, from now on we will simply write ‘detection’ or
‘detect’ for ‘unambiguous detection’ or ‘unambiguously
detect’.

LetMn be a local measurement strategy for strings of
n particles, where each local measurement has three pos-
sible outcomes: 0, φ, and I, which correspond to detect-
ing |0〉, |φ〉, and an inconclusive result, respectively. Let
Θj be a particular set of outcomes of the first j measure-
ments. Then, the sequence of outcomes (Θk−2, 0k−1, φk)
leads to the detection of a change point at position k. The
probability of a successful detection of the change point
given the source state |Ψk〉 and a measurement strategy



3

Mn, that we name local efficiency for position k, reads

Dn(k) :=
∑

Θk−2

Pr[(Θk−2, 0k−1, φk)|Ψk,Mn] , (6)

and the average success probability is given by

PL
s =

1

n

n∑

k=1

Dn(k) . (7)

We characterize next the local measurements that com-
prise a strategy Mn. An optimal measurement that un-
ambiguously discriminates between two states |0〉 and |φ〉
that are assumed to occur with prior probabilities η0 and
ηφ, respectively, succeeds with conditional probability

1−c
√
ηφ/η0 if the state was |0〉 and 1−c

√
η0/ηφ if it was

|φ〉 [8]. Therefore each local measurement is determined

by a strength parameter x :=
√
ηφ/η0 that specifies its

bias towards detecting |0〉 or |φ〉. In terms of x and c,
the local conditional probabilities Pr(outcome|state) read
Pr(0|0) = 1 − cx, Pr(I|0) = cx, Pr(φ|φ) = 1 − c/x, and
Pr(I|φ) = c/x. Obviously, Pr(0|φ) = Pr(φ|0) = 0. The
positivity of these probabilities bounds the strength pa-
rameter to the interval c ≤ x ≤ 1/c. The extreme value
x = c (x = 1/c) corresponds to an effective two-outcome
measurement that either detects |0〉 (|φ〉) or yields an in-
conclusive answer, and any other intermediate value of
x represents a three-outcome measurement. An optimal
local measurement strategy Mn is a sequence of n − 1
unambiguous measurements that maximizes Eq. (7).

We address the problem of finding the optimal Mn

by considering general adaptive strategies that take into
account the information learned in previous measure-
ments. We introduce this feature by letting the strength
of the measurement over particle j generically depend
on all past outcomes rj−1 = {r1, . . . , rj−1}, that is,
x(j; rj−1). Note that rj−1 cannot contain any out-
come φ, as the procedure stops after obtaining the
first φ. Thus, rj−1 is a binary string of 0’s and I’s.
This is the most general one-way local-operations-and-
classical-communication (LOCC) protocol that one can
devise [16]. Optimizing LOCC protocols is in general
unfeasible, since the number of parameters grows expo-
nentially with n. However, for the problem at hand, this
number is effectively reduced to n − 1 and thus the op-
timization can be tackled efficiently. This exponential
reduction is a direct consequence of the logic behind un-
ambiguous measurements: after obtaining an outcome 0
at position j, one knows for a fact that all particles of
the string up to the jth position were in the state |0〉,
therefore any information that previous outcomes may
provide is superseded. Further, if the outcome of the
measurement over the jth particle is I, the following op-
timal measurement strength is fixed to detect only the
state |0〉, since the sequence of outcomes Iφ irremediably
implies the failure of the protocol. These observations
are condensed in the equations x(j; rj−1 = 0) =: x(j),
x(j; rj−1 = I) = c, hence the free parameters of a gen-
eral adaptive strategy Mn is just the set of strengths

{x(j)}n−1
j=1 of measurements that are preceded by an out-

come 0.
To gain intuition on the general solution, we first

show the explicit construction of the optimal strategy
for n = 4. The conditional detection probabilities are

D4(1) = 1− c

x(1)
, (8)

D4(2) = [1− c x(1)]

[
1− c

x(2)

]
, (9)

D4(3) = [1− c x(1)] [1− c x(2)]

[
1− c

x(3)

]
+

c x(1)(1− c2)

[
1− c

x(3)

]
, (10)

D4(4) = [1− c x(1)] [1− c x(2)] [1− c x(3)]

+ c x(1)(1− c2) [1− c x(3)]

+ [1− c x(1)] c x(2)(1− c2) + c x(1)c2(1− c2) .
(11)

Each summand in D4(k) corresponds to the probability
of a string of outcomes leading to detection of the change
point at position k. For instance, D4(4) comprises the
strings 000, I00, 0I0, and II0. The maximization of
Eq. (7) leads to the optimal strengths

x(1) =
1

1− c+ c2
, x(2) =

1

1− c , x(3) = 1 . (12)

The first key observation is that the optimal local ef-
ficiencies match the optimal global efficiencies for each
change point, and, therefore, PL

s = Ps. Indeed, inserting
Eq. (12) into Eqs. (8) to (11), one obtains D4(k) = γ4(k)
for k = 1, . . . , 4, where γ4(k) is given in Eq. (2). The sec-
ond key observation is that this solution only holds for
c ≤ 1/2, since outside this range x(2) > 1/c and hence
it does not yield a valid measurement. Further, the opti-
mal value x(3) = 1 can be easily understood: conditioned
to having obtained r2 = 0, the probability of the third
particle being in the state |0〉 or |φ〉 is 1/2, hence the
optimal choice is a symmetric measurement. We will see
that these features remain valid in the general case.

A. Optimal online protocol

Let us now present the solution for the optimal
strength parameters and detection probabilities for arbi-
trary n. It is convenient to write the explicit dependence
on the total number of particles, i.e., x(j) as xn(j). As
discussed before, obtaining an outcome 0 at position j−1
discards all hypotheses with a change point at position
k ≤ j− 1, effectively resetting the problem to one with a
change point in a string of n− j+ 1 particles. Hence, we
have that xn(j) = xn−j+1(1) holds for optimal strengths.
Now, we follow the intuition from the n = 4 problem
that, in case there is no performance gap between the
optimal global and local strategies, the global and local
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efficiencies should match one by one. This leads us to
the equation Dm(1) = 1− c/xm(1) = γm(1) [cf. Eq. (8)].
Using the explicit value of γn−j+1(1) from Eq. (2), we
obtain

xn(j) = xn−j+1(1) =
1 + c

1− (−c)n−j , j = 1, . . . , n− 1 .

(13)
Note that this formula reduces to Eq. (12) for n = 4, and
that it is a solution for the set of equations {Dn(k) =
γn(k) : k = 1, . . . , n − 1}. In Appendix A we pro-
vide a proof by induction of Eq. 13. We also note that
xn(n− 2) = 1/(1− c) is the first strength to saturate at
the extreme value 1/c with increasing c, hence this gen-
eral solution is still only valid up to c = 1/2. In sum-
mary, for overlaps 0 ≤ c ≤ 1/2, the optimal online strat-
egy consists in a sequence of unambiguous measurements
of strengths xn(j) given by Eq. (13) if the outcome of
the measurement on the previous particle is 0, and fixed
strengths c if the previous outcome is I. This online
protocol attains the performance of the optimal (global)
strategy, given by Eq. (3).

B. Beyond c > 1/2

We now analyze the optimal local strategy for c > 1/2.
It is clear that local strategies cannot reach optimal per-
formance in this range of overlaps, as this would require
the expressions of the strengths (13) remain valid beyond
their upper limit 1/c. The optimization of local protocols
is much more constrained than that of a global strategy
and, hence, a smaller feasibility region is to be expected.
As c increases, there is a progressive saturation of the
strengths, starting with xn(n − 2). The exact satura-
tion point for each strength can be computed from the
techniques shown in Appendix B, as well as the point
cS ≈ 0.69 where all strengths but the last one [always
fixed to be xn(n− 1) = 1] are saturated at xn(k) = 1/c.
Beyond cS , the optimal online strategy is a sequence of
two-outcome unambiguous measurements, aiming at the
detection of 0 (φ) if the previous outcome was I (0).

The exact expressions for the optimal local protocol
in the intermediate region 1/2 < c < cS are rather im-
practical. Instead, we provide a simpler local protocol
that we prove to be optimal for large n. By doing so, we
also discover that online protocols can still attain optimal
global performance beyond c = 1/2 and up to c = c∗,
precisely the value that divides the two regimes in the
global approach. We consider the simple local strategy
with constant strengths xn(k) = x after a 0 outcome and,
of course, a strength c after an I outcome. In Appendix C
we show that the success probability of such strategy for
large n reads

Ps '
1− c2

1 + cx− c2
(

1− c

x

)
, (14)

which is maximal for x = 1 + c. Note that we could have
anticipated this result, as it corresponds to the approx-

imation of Eq. (13) for large n. The maximal success
probability for local strategies with constant strengths
then reads

PFL
s ' 1− c

1 + c
, (15)

which coincides with the optimal asymptotic value in
Eqs. (3) and (5) (the superscript FL stands for fixed lo-
cal). The choice x = 1 + c yields a valid a measurement
up to c∗ ≈ 0.61, a value that is determined by the satu-
ration condition 1 + c = 1/c.

FIG. 1. Probability of exact identification of a change point
as a function of c = |〈0|φ〉| for a string of n = 31 parti-
cles. The black dashed line is the optimal success probabil-
ity when global strategies are considered, given by the piece-
wise function composed by Eqs. (3) and (5). The pink solid
line corresponds to the success probability of different on-
line detection strategies, depending on the value of c. In the
interval 0 ≤ c ≤ 1/2, the online strategy characterized by
the strengths in Eq. (13) matches exactly the optimal per-
formance. Beyond c = 1/2 the FL strategy is optimal only
asymptotically and up to c = c∗, although the difference for
n = 31 of around ∼ 0.1% is hardly appreciated. For c > c∗

the success probability of the SL strategy starts to deviate
from optimality and shows a finite gap even in the asymp-
totic limit. The inset plot highlights this regime transition of
online strategies around c∗.

For c > c∗, the constant strengths saturate to x = 1/c
and Eq. (14) reads

P SL
s ' (1− c2)2

2− c2 , (16)

where SL stands for saturated local. The success proba-
bility deviates from the optimal value given in Eq. (15),
but the difference is no larger than 2.2% in the worst
case [? ]. The closeness of online protocols to optimal
performance is patent in Fig. 1, where we represent the
average success probability of the best online strategy in
each overlap regime together with the optimal one for a
string of length n = 31.
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IV. CONCLUSIONS

Let us conclude by reviewing our results and its impli-
cations. In this work, we have derived the optimal local
protocol that unambiguously detects a quantum change
point. We have shown that it attains exactly the perfor-
mance of an optimal global protocol for arbitrary string
lengths and for values of the overlap c below 1/2. Our
results provide not only one of the few non-trivial ex-
amples of state identification tasks where the optimal
protocol can be found, but also the first instance with
arbitrarily many hypotheses where one-way LOCC mea-
surements match optimal performance (see Refs. [14, 15]
and [17, 18] for such instances for binary and ternary dis-
crimination, respectively). Besides this remarkable fea-
ture, the LOCC protocol has several attractive aspects:
(i) it is an online protocol, i.e., in case the change point is
detected, it is as soon as it appears; (ii) no quantum mem-
ories are required; (iii) the necessary measurements are
all local and, hence, easy to implement experimentally;
and (iv) the memory required for the adaptive selection
of subsequent measurements amounts to just one bit (en-
coding whether the previous outcome was conclusive or
not), which may benefit the stability and robustness of

an experimental setup.
We have also analyzed how above c = 1/2 the problem

becomes too constrained for any online strategy to attain
global optimality for strings of arbitrary finite length, al-
though the performance gap is very small. Despite this,
for large n, we have shown that optimal global perfor-
mance can still be attained for overlaps up to c∗ ≈ 0.61
by an online fixed-strength strategy. Beyond c∗, the best
local protocol essentially consists in a sequence of two-
outcome measurements that detect just one of the local
states: either |0〉 or |φ〉. We have shown that such proto-
col deviates from the optimal performance only by 2.2%
in the worst case.

Finally, it is worth mentioning that our results are
amenable to experimental realization with current tech-
nology, as the experimental implementation of the nec-
essary unambiguous measurements has already been
demonstrated in optical platforms [19–22].
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Appendix A: Proof of Eq. (13)

In this section we provide a proof by induction of the
optimal form of the strengths xn(k), given by Eq. (13).
This optimal form is

xn(k) =
1 + c

1− (−c)n−k . (A1)



6

Let us first establish some additional notation. Recall-
ing Eq. (6), given a local strategy Mn, the efficiency of
detection of the change point at position k reads

Dn(k) =
∑

Θk−2

Pr[(Θk−2, 0k−1, φk)|Ψk,Mn]

=: Pn(Σk−2, 0k−1, φk) ,

(A2)

where the sum runs over the 2k−2 sets that only con-
tain outcomes 0 and I, and Σj denotes all such sets of
j outcomes. The argument of Pn is always to be under-
stood as an ordered, consecutive sequence of outcomes,
so we will omit the position subscripts when no confusion
arises. As argued in the main text, the optimal local pro-
tocol can be obtained by equating each local efficiency to
the corresponding global one, i.e., Dn(k) = γn(k), and
solving the resulting system of equations. Recall that
the optimal global detection efficiencies read

γn(k) =

n∑

j=1

(−c)|k−j| =
1− c− (−c)k − (−c)n−k+1

1 + c

(A3)

for k = 1, . . . , n. We first observe that, for k < n, these
equations read

Pn(Σk−2, 0, φ) = Pn(Σk−2, 0)

[
1− c

xn(k)

]
= γn(k) .

(A4)
We also have that

Pn(Σk−1, 0) = Pn(Σk−2, 0)[1− c xn(k)]

+ Pn(Σk−2, I)(1− c2) , (A5)

and recall that Pn(Σk−2, I) = 1 − Pn(Σk−2, 0). Then,
using Eqs. (A4) and (A5) we get the relation

xn(k + 1) = c

[
1− γn(k + 1)

(1− c2)− c γn(k)xn(k)

]−1

. (A6)

The first strength is immediate to derive from the equa-
tion Dn(1) = 1− c/xn(1) = γn(1):

xn(1) =
c

1− γn(1)
=

1 + c

1− (−c)n−1
, (A7)

where we have used Eq. (A3) for k = 1. Using Eqs. (A6)
and (A3), we arrive by induction at the formula for the
optimal strengths Eq. (A1).

The attentive reader should have noticed that the sys-
tem of equations Dn(n) = γn(n) for k = 1, . . . , n is over-
constrained: there are n equations but n − 1 unknowns
xn(k). The first n − 1 equations determine univocally
all the unknowns, and the last equation, Dn(n) = γn(n),
should be automatically satisfied. This could seem at
first sight a rather non-trivial requirement as Dn(n) con-
tains 2n−2 summands (such is the size of the set Σn−2),
but the proof is quite straightforward. We recall that

γn(n − 1) = Dn(n − 1) = Pn(Σn−3, 0n−2, φn−1) =
Pn(Σn−3, 0n−2, 0n−1) = (1− c)Pn(Σn−3, 0n−2), because
the last strength takes the symmetric value xn(n−1) = 1.
Then,

Dn(n) = Pn(Σn−3, 0, 0) + Pn(Σn−3, I, 0)

= (1− c)Pn(Σn−3, 0) + (1− c2)Pn(Σn−3, I)

= (1− c)Pn(Σn−3, 0) + (1− c2)[1−Pn(Σn−3, 0)]

= (1− c2)− (1− c)Pn(Σn−3, 0)

= (1− c2)− γn(n− 1) = γn(n), (A8)

where the last equality can be easily checked from
Eq. (A3).

Appendix B: Construction of optimal local strategies

Here we show a general method to construct an op-
timal set of strengths for any given n. This method is
particularly useful in the range of overlaps 1/2 < c ≤
cS ≈ 0.69, where a mixture of saturated and unsaturated
strengths coexist. Given an arbitrary local strategy de-
termined by the set of strengths {xn(k)}n−1

k=1 , we write
the maximization conditions ∂PL

s /∂xn(k) = 0, where
PL
s = (1/n)

∑n
k=1Dn(k) and Dn(k) is given by Eq. (A2).

Starting from the last strength, we note that all the terms
of PL

s that depend on xn(n− 1) can be written as

Pn(Σn−3, 0n−2) [Pr(φn−1|0n−2) + Pr(0n−1|0n−2)]

= Pn(Σn−3, 0n−2)

[
1− c

xn(n− 1)
+ 1− cxn(n− 1)

]
,

(B1)

where the last factor takes the same form for any value
of n. The two probabilities inside the brackets in the
first line of Eq. (B1) are, respectively, the probabilities
of obtaining outcomes φ and 0 at position n − 1 condi-
tioned on an outcome 0 at position n − 2. Note that
both events successfully identify change points at posi-
tions n − 1 and n, respectively. The maximization of
Eq. (B1) yields xn(n − 1) = 1. This value intuitively
makes sense, since measuring the state of the particle at
position n − 1 means that only two equally likely possi-
ble change points remain, either at position n − 1 or at
position n. In such binary identification case, it is clear
that a balanced measurement is optimal.

Next we write all the terms of PL
s that depend on

xn(n − 2), and substitute the value xn(n − 1) = 1. We
obtain

Pn(Σn−4, 0n−3)
{

1− c

xn(n− 2)
+ 2(1− c)[1− cxn(n− 2)]

+ (1− c2)cxn(n− 2)
}
.

(B2)

Again, the term in brackets is the same for any n, and
it determines the optimal value xn(n − 2) = 1/(1 − c).
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One can proceed recursively, and realize that the opti-
mal value of xn(n− j) satisfies xn(n− j) = xn+1(n+ 1−
j). This observation provides an alternative proof that
xn(k) = xn−1(k − 1) is not only a feature of the opti-
mal unsaturated strengths [cf. Eq. (A1)], but also holds
for optimal strengths in general, even when the extremal
conditions ∂PL

s /∂xn(k) = 0 are not satisfied (which hap-
pens when the feasibility constraint xn(k) ≤ 1/c is hit).
In this situation, one substitutes the strengths for its ex-
tremal value and carries on with the maximization of the
next strength.

For the subsequent strengths it is convenient to use
the notation Σk2k1 to denote all the possible strings of

outcomes between particle k2 and k1. For xn(n − 3),
we have Σn−3

n−1 = {II0, I00, 000, I0φ, 00φ}, and we have

to consider the conditional probability Pr(Σn−3
n−1|0n−4)

with xn(n − 2) = 1/c and xn(n − 1) = 1. Solving
∂Pr(Σn−3

n−1|0n−4)/∂xn(n− 3) = 0, we obtain

xn(n− 3) =
1√

c(2− c)(1− c2)
. (B3)

The saturation condition xn(n−3) = 1/c has the solution
c =: cS ≈ 0.69. Checking for several values of n, one sees
that xn(n−3) is always the last strength that reaches the
saturation point. This is in accordance with the intuition
that the smallest unsaturated strength [of the form in
Eq. (A1)] should be the last one to reach 1/c. Then, cS
corresponds to the total saturation point, defined as the
point beyond which all strengths are saturated [naturally
with the exception xn(n− 1) = 1].

For the following strengths xn(k) for k = n −
4, n − 5, . . ., one proceeds by recursively maximizing
Pr(Σn−kn−1 |0n−k−1), taking into account if the saturation
condition is hit for any of the strengths. Notice that only
one variable, xn(k), is maximized at each step, because
the strengths xn(k + 1), xn(k + 2), . . . , xn(n − 1) have
been already fixed at their optimized value obtained in
previous optimization steps.

Appendix C: The fixed local strategy

Here we include the calculation of the success probabil-
ity for the fixed local (FL) strategy, and explicitly show
that, in its range of validity, it is asymptotically opti-
mal. Let us first rename Pn(Σk−1, I) =: G(k), and note
that Pn(Σk−1, 0) = 1 − G(k). Then, for a generic local
strategy with fixed strengths xn(k) =: x, we can write

G(k + 1) =Pn(Σk, I) = Pn(Σk−1, I, I) + Pn(Σk−1, 0, I)

=c2Pn(Σk−1, I) + c xPn(Σk−1, 0)

=c2G(k) + c x [1−G(k)]

=c x− (c x− c2)G(k) , (C1)

where we have used that Pn(I, I) = c2Pn(I) (recall that,
after an outcome I, we always apply an extreme two-
outcome unambiguous measurement completely biased

towards detection of the local state |0〉), and Pn(0, I) =
c xPn(0). The recursion relation (C1) can be readily
solved using the initial condition G(1) = c x to give

G(k) = c x
1− (c2 − c x)k

1 + c x− c2 . (C2)

We can relate the local detection efficiencies Dn(k) to the
function G(k) by looking at Eq. (A2). We obtain

Dn(k) = G(k − 2)(1− c2)
(

1− c

x

)

+ [1−G(k − 2)](1− c x)
(

1− c

x

)
, (C3)

which is valid for k = 1, . . . , n − 2. Note that, while
the original definition G(k) = Pn(Σk−1, I) does not hold
physical meaning in the cases G(−1) and G(0), using the
functional expression (C2) in Eq. (C3) we recover the
correct local efficiencies for the first and second positions,
namely Dn(1) = 1− c/x and Dn(2) = (1− c x)(1− c/x).
The last two local efficiencies have a slightly different
expression and cannot be recovered from Eq. (C3). This
is so because the last strength is always fixed to xn−1 = 1
conditioned to having obtained rn−2 = 0 as a previous
outcome, as argued in the main text. In addition, recall
that the nth particle is in the state |φ〉 by definition and
hence there is no need to measure it. Taking this into
account, the success probability for the FL strategy can
be written as

PFL
s =

1

n

{
n−2∑

k=1

G(k − 2)(1− c2)
(

1− c

x

)

+ [1−G(k − 2)] (1− cx)
(

1− c

x

)

+
{
G(n− 3)(1− c2) + [1−G(n− 3)](1− c x)

}
(1− c)

+ G(n− 2)(1− c2) + [1−G(n− 2)](1− c)
}

=
1

n

{
n−2∑

k=1

G(k − 2)(1− c2)
(

1− c

x

)

+ [1−G(k − 2)] (1− cx)
(

1− c

x

)

+ (1− c) [2− (1− c)G(n− 2)]

}
. (C4)

For large n, the leading order of the success probability
is

PFL
s ' cx

1 + cx− c2 (1− c2)
(

1− c

x

)

+
1− c2

1 + cx− c2 (1− cx)
(

1− c

x

)

=
1

1 + c x− c2 −
c

x
, (C5)

which just amounts to neglect the exponential terms in
Eq. (C2) and the slightly different last term in Eq. (C4).



8

Note that this asymptotic limit of the success probabil-
ity would remain invariant if we would choose the same
fixed strength xn−1 = x for the last measurement too,
as opposed to the slightly better choice of a symmetric
strength xn−1 = 1. Eq. (C5) can be easily maximized to
obtain

xmax = 1 + c → PFL
s ' 1− c

1 + c
. (C6)

Hence, as anticipated, we obtain that a protocol that
measures a particle with a local measurement of fixed
strength x = 1 + c if the previous outcome was 0, and
x = c if the previous outcome was inconclusive, is asymp-
totically optimal up to a threshold value of the overlap
c∗ ≈ 0.61. This threshold is the solution of the boundary
constraint on the fixed strength x, i.e., 1 + c = 1/c.

Appendix D: Success probability of the Saturated
Local strategy

The saturated local (SL) strategy is defined by the
fixed strengths xn(k) = 1/c, at the boundary of their

physicality interval. The corresponding local efficiencies,
Dn(k), up to k = n− 2 read

Dn(1) = (1− c2), Dn(2) = 0 , (D1)

and

Dn(k) = (1− c2)2F (k − 2), k = 3, . . . , n− 2, (D2)

where the function F (k) can be directly read off of
Eq. (C2) particularizing for x = 1/c. The exact ex-
pression for the success probability and the leading order
term in the asymptotic regime of large n are derived like-
wise from Eqs. (C4) and (C5). The latter reads

P SL
s ' (1− c2)2

2− c2 . (D3)

Notice that this value is smaller than the leading term
(1 − c)/(1 + c) of the optimal success probability [cf.
Eqs. (3), (5), and Eq. (C6)]. The difference is however
very small, with a maximal value of 0.022 at c ≈ 0.89.
The asymptotic success probability for the SL strat-
egy, Eq. (D3), equals the optimal value precisely at

c∗ = (
√

5− 1)/2, below which the FL strategy is asymp-
totically optimal, as discussed in the main text.
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We investigate the quantum state discrimination task for sets of linear independent pure states
with an intrinsic ordering. This structured discrimination problems allow for a novel scheme that
provides a certified level of error, that is, answers that never deviate from the true value more than
a specified distance and hence a control of the desired quality of the results. We obtain an efficient
semidefinite program and also find a general lower bound valid for any error distance that only
requires the knowledge of optimal minimum error scheme. We apply our results to the quantum
change point and quantum state anomaly detection cases.

I. INTRODUCTION

State discrimination plays a fundamental role in quan-
tum information sciences as it determines the capacity of
quantum systems to carry information. The task consists
in identifying in which of some known set of states a sys-
tem was prepared by some source. If the possible states
are mutually orthogonal this task can be done perfectly.
However, if the states are not mutually orthogonal the
problem is very nontrivial and it requires optimization
with respect to some reasonable criteria.

The most studied discrimination schemes are minimum
error (ME) and unambiguous discrimination (UD). In
ME after a measurement is performed on the system the
experimenter must give an answer about its state. Nat-
urally, some of the answers will be erroneous, and the
optimal ME strategy is the one that yields the minimum
probability of committing an error [1]. In contrast, in
UD, no errors are allowed, i.e, the answers of the exper-
imenter must be absolutely certain. This can only be
achieved at the expense of permitting inconclusive mea-
surement outcomes. The optimal strategy is the one that
minimizes the probability of inconclusive answers. It is
known that UD is only possible for sets of linearly inde-
pendent states [2]. For mixed states UD is also possible
as long as they do not have identical supports [3].

Some extensions of these fundamental schemes have
also been considered. Discrimination with maximum
confidence [4] can be applied to states that are not neces-
sarily independent and can be regarded as a generalized
UD strategy. Strategies that interpolate between ME and
UD have also been studied [5]. In those a given max-
imum value for the error probability (or equivalently a
maximum value for inconclusive probability) is enforced.
Varying this value yields a continuous set of strategies
between UD (or maximum confidence) and ME.

Despite being such a fundamental task, analytical so-
lutions for optimal discrimination schemes in the multi-
hypothesis case remains a challenge (see [6] for recent

∗Electronic address: Esteban.Martinez@uab.cat
†Electronic address: Ramon.Munoz@uab.cat

developments). Essentially only the two state [1] and
symmetric states cases [7–9] have been solved (see [10–
12] for reviews on state discrimination).

In this work we consider a novel multi-hypothesis
scheme for sources that prepare states with intrinsic
structure. In particular, we consider linear independent
states that can be represented as a linear chain (see Fig 1)
of n local states. This type of sources includes the inter-
esting cases of change point [13–15] and state anomaly
detection [16] problems. In these structured sources the
hypotheses are labelled by some position in the chain,
Hence the errors have a natural distance, i.e., we can
have have a one-site error, two-site error, etc-., if the
outcome of the protocol is an answer that is at distance
of one, two, etc., units from the site labelling the true
hypothesis. This scheme is interesting not only from the
theoretical point of view, but also for practical purposes.
In many circumstances not any error can be tolerated,
however small deviations from the true hypothesis may
have only a limited impact on our decisions. So, it may
prove useful to find optimal schemes under the constraint
that no outcome can differ from the true hypothesis more
than a given threshold distance ∆. Doing so, we have cer-
tified answers that will not spoil decisions that we may
take upon the outcome of the protocol. We therefore call
this scheme certified answer discrimination (CAD). Also
if we relax the UA condition and allow some errors, the
success probability of guessing the correct hypothesis can
increase substantially as we will show. For ∆ = 0 we re-
cover the UD scheme while for ∆ = n− 1 we get the ME
scheme, thus CAD also provides an interpolation between
UD and ME. The interpolating scheme discussed in [5]
also yield a significant increase in the success probability,
but, contrasting the CAD scheme, it may give erroneous
answers that are very far from the true value. As it will
become clear, CAD is a more natural scheme, closer to
the notion of Hamming distances between states (i.e, the
sum of positional mismatches [17]).

In this paper we give a convenient and efficient semidef-
inite program (SDP) [18–20] formulation of CAD schemes
for linearly independent states. The SDP also enables us
to find an analytical lower bound for the probability of
success for any allowed error distance ∆. Interestingly,
this lower bound only requires to calculate the ME suc-
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cess probability, It provides an approximation on how
much the success probability is reduced as we increase
the requirements on the quality of the answers of the
discrimination protocol.

The paper is organized as follows. In the next Section
we present the CAD scheme and its SDP formulation.
In Section III we obtain a lower bound for the success
probability for any value of ∆. In Section IV we apply
our results to the paradigmatic case of the change point
and also discuss the state anomaly detection problem.
Section IV contains the conclusions of our findings. We
also include an appendix with some technical details.

II. CERTIFIED ANSWER DISCRIMINATION
∆-SCHEMES

Consider a quantum state multi-hypothesis discrimi-
nation problem where the source quantum states have
an intrinsic ordering such as a one dimensional chain as
depicted in Fig. 1. In this case it is possible to define a
natural distance between the states.

. . . . . .

2-site error 2-site error

1-site error 1-site error

Figure 1: Structure of the source states. The position of the
blue dot labels the state.

If we are given a state |Ψk〉, where k is the position
that labels the state, our aim is to find a measurement,
generally given by a Positive Operator Value (POVM),
that returns the value k with the highest probability. The
POVM has to satisfy the additional constraints that no
errors beyond some distance ∆ can be committed. For
states given by a chain of n states, the POVM contains
n+1 elements {Ek ≥ 0}nk=0, where E0 = 11−∑n

k=1Ek is
the element corresponding to an inconclusive answer. As
in UD this element has to be introduced in order to satisfy
the constraints. Naturally as ∆ increases, i.e, more and
more type of errors are allowed, we have 〈Ψk|E0 |Ψk〉 →
0 for k = 1, 2, . . . , n.

The optimization problem can be written as the fol-
lowing SDP:

maximize
E

1

n

n∑

i=1

〈Ψi|Ei |Ψi〉

subject to 〈Ψj |Ei |Ψj〉 = 0 ∀|i− j| > ∆
n∑

i=1

Ei ≤ 1

Ei ≥ 0 ∀i,

(1)

where for simplicity we assume that the prior probability
is the same for all source states. We will also assume

that the source states are linear independent, as naturally
happens in the examples considered here (see section IV).
Observe that each value ∆ = 0, 1, 2, . . . , n − 1 defines
a discrimination scheme that we will call a ∆-scheme.
Note also that E0 is a slack variable that it is taken into
account by the inequality

∑n
i=1Ei ≤ 11 in the POVM

condition.
For a given value of ∆ we have a probability of suc-

cess P∆
s , a probability of error P∆

e and a probability of
inconclusive outcome P∆

I , and they satisfy the unitarity
condition P∆

s + P∆
e + P∆

I = 1. The value ∆ = 0 cor-
responds to the unambiguous case for which the error
probability vanishes, P∆=0

e = 0, and the outcome can
either perfectly identify the state or be inconclusive, but
not erroneous. For ∆ = n − 1 the are no constraints on
the errors and we recover the minimum error scheme, i.e
the inconclusive probability vanishes, P∆=n−1

I = 0. As
we will see later, the minimum error limit can be effec-
tively achieved for much smaller values of ∆.

If the source states are linearly independent, we can
transform the SDP (1) into an equivalent and more use-
ful program. From the n linearly independent estates
{|Ψi〉}ni=1 we construct the R matrix,

R =
n∑

i=1

|Ψi〉〈i|, (2)

where |i〉 is any orthonormal basis (note that linear in-
dependence implies that R is invertible) and consider
the new operators F∆

r = R†E∆
r R. Observe that the

diagonal elements of F∆
r are the expectation values

〈Ψi|E∆
r | |Ψi〉 = [F∆

r ]i,i. Thus, the first constraint in
Eq. (1) translates into the condition that all diagonal
elements [F∆

r ]i,i vanish except those with |i − r| ≤ ∆.
Note also that E∆

r ≥ 0→ F∆
r ≥ 0 [21]. The off-diagonal

terms [F∆
r ]i,j are then also constrained by positivity, and

hence we have [F∆
r ]i,j = 0 for |r− i| > ∆ and |r−j| > ∆.

The structure of the matrix F∆
r is illustrated in Fig. (2).

The second constraint in Eq. (1) can be recast as

G−
n∑

r=1

F∆
r ≥ 0, (3)

by applying the matrix R† on the left and the matrix R
on the right. Here G = R†R is the Gram matrix [22]
whose elements are

Gi,j = 〈Ψi|Ψj〉. (4)

Thus the SDP (1) is transformed onto

maximize
Z

1

n
Tr[ZA]

subject to Φ∆[Z] ≤ G
Z ≥ 0.

(5)

The matrix variable Z has a block diagonal structure
containing the non-vanishing elements of F∆

r . In Fig. 3
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. . .

. . .
Figure 2: Example of the structure of F∆

r = R†E∆
r R. The

matrices F∆
r have dimensions n × n and their non-vanishing

elements are depicted as colored boxes. For ∆ = 0 (no errors),
the central blue box is the only non-vanishing element. For
∆ = 1 (one error) the non-vanishing elements are contained
in the red 3× 3 block, and in the 5× 5 green block for ∆ = 2,
etc. The remaining entries of F∆

r are all zero.

we explicitly depict it for ∆ = 1. The elements high-
lighted are the ones that appear in the objective function
Tr[ZA]. The constant matrix A depends on the number
n of hypothesis and maximum distance ∆ of the allowed
errors (we do not add these labels to avoid cluttering too
much the notation). Matrix A ”selects” the elements of
the matrix variable Z that have to be optimized, i.e.,
the central elements of the Z blocks. For ∆ = 1 one
has A = diag{1, 0, 0, 1, 0, 0, 1, . . . , 1} and Z and A are
(3n− 2)× (3n− 2) matrices. The generalization for any
∆ is straightforward. Note that the appearance of the
Gram matrix G in the second constraint of (5) showcases
that all the discrimination properties of sets of linearly
independent states are encapsulated in the Gram matrix.

The linear map Φ∆ that incorporates the constraints
(3) can be regarded as the action of two linear maps:
Φ∆ = Φ2 ◦ Φ1

∆. The first map, Φ1
∆, embeds each block

into a n×n sub-matrix and pads the remaining elements
with zeros. The embedding is such that the k’th sparse
sub-matrix has the central (highlighted) element in the
kth position of the diagonal, as can be seen in Fig 4. With
all the sub-matrices we have an n2 × n2 block diagonal
matrix. The second map, Φ2, adds the sub-matrices to
get a final n×n matrix, also illustrated in Fig. 4. Notice
that this map is independent of ∆.

We note that the variable Z from SDP (5) has dimen-
sions [n(2∆ + 1)−∆(∆ + 3)]× [n(2∆ + 1)−∆(∆ + 3)]
which is significantly lower than n2 × n2 of the original
SDP (1). The size of the variables is similar only for
∆ → n. However, as we will see in the quantum change

Z =

.. .

Figure 3: Structure of the matrix variable Z for ∆ = 1. The
blue boxes correspond to the free matrix elements and the
blank ones are fixed to be zero. The highlighted boxes are the
elements that appear in the objective function (1/n) Tr[ZA]
of Eq. (5).

Φ1[Z] =

. . .
. . .

. . .

+ + + . . .

Figure 4: The correspondent map takes the non-zero parts of
the variable Z and accommodates it in n × n matrices with
zeros in the remaining places. Observe that matrix sum is
defined only for matrices of the same dimensions.

point, the ME limit can be effectively reached for small
values of ∆, and then the number of variables remains
low for all meaningful values of ∆.

There is no general mathematical method for solving a
given SDP analytically, only problems with high degree
of symmetry are known to be solvable. In some cases
the primal or the dual version of the SDP can suggest an
ansatz that may provide the solution (see [14] for a nice
example). Therefore, any understanding of the form of
the solutions of SDPs at hand is of interest. The trans-
formation of the SDP made above proves to be beneficial
not only for the numerical advantage but also to obtain
insight into how the probability of success behaves in the
intermediate regime between unambiguous and minimum
error schemes. In particular, it enables us that find use-
ful analytical lower bounds of the probability of success
for any ∆ that we discuss in the next section.

III. A LOWER BOUND FOR P∆
s

The main idea is to obtain a feasible solution of the
SDP (5). Any ansatz matrix Z̃ that satisfies the con-
straints of an SDP is by construction a lower bound to
the optimal solution. The method depends heavily on
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∆

. . .

. . .

ZME
r

Z∆
r

Figure 5: We depict a specific block r of ZME − Z∆. The
light blue block corresponds to ZME

r and the darker one to
Z∆

r . The small black boxes show the elements of the minor
of interest to obtain the bound (9).

having previously solved the ME scheme, i.e. we have at
our disposal the success probability PME

s , and the corre-
sponding ZME . Fortunately, in many cases the minimum
error scheme can be computed or well approximated with
a square root measurement [23, 24].

As discussed in previous section the mapping Φ∆[Z] in
the SDP (5) can be understood as two step mapping that
first transforms the variable Z into a n2 × n2 variable
that has zeros in appropriate places and a second step
that sums all the individual blocks into a n × n matrix.
If we only apply the first map, we get the following SDP:

maximize
Z

1

n
Tr[ZA]

subject to Φ1
∆[Z] ≤ ZME

Z ≥ 0.

(6)

Observe that any variable Z that satisfies Φ1
∆[Z] ≤ ZME

also satisfies Φ∆[Z] ≤ G (just apply the map Φ2, on both
sides of the first inequality). Hence, any feasible solution
of the SDP (6) is in the feasible set of the SDP (5), but
not vice versa, and it provides a lower bound for the
probability of success.

For simplicity, let us call Φ1
∆[Z] = Z∆ and [Z∆

r ]i,j the
i, j element of its r-th sub-matrix Z∆

r . The positivity
condition ZME − Z∆ ≥ 0 in Eq. (6) implies that any
principal minor of ZME −Z∆ has to be positive [22]. To
get a bound in terms of the known ZME , the elements of
the principal minor have to be outside the central blocks
of Z∆, as depicted in Fig. 5. The choice of this minor
is such that it contains only one non-vanishing diagonal
element of Z∆ and three remaining elements are at a ∆

distance and hence take the (known) ZME values. We
take the minimum distance ∆ as larger distances will give
less stringent bounds.

The positivity condition then gives

(
[ZME

i]i,i − [Z∆
i ]i,i

)
[ZME

i]i+∆+1,i+∆+1 ≥
∣∣[ZME

i]i,i+∆+1

∣∣2 . (7)

Using the fact that the arithmetic mean is bigger than
the geometric mean we finally have that

(
[ZME

i]i,i−[Z∆
i ]i,i

)
+ [ZME

i]i+∆+1,i+∆+1

≥ 2
∣∣[ZME

i]i,i+∆+1

∣∣ . (8)

As we will be dealing with problems having some sym-
metry it is convenient to choose this lower minor for the
first dn/2e and the corresponding upper minor for the
rest of blocks. For these upper minors we get the same
inequality (8) with the change ∆→ −∆.

In order to calculate the bound of the success probabil-
ity only the diagonal elements of Z̃ have to be specified.
The best choice is to take them to saturate the inequali-
ties (8), i.e.,

[Z̃i]i,i =

{
[ZME

i]i,i −Hi(∆) for 1 ≤ i ≤ dn/2e
[ZME

i]i,i −Hi(−∆) for i > dn/2e ,

(9)

where

Hi(∆) = 2
∣∣[ZME

i]i,i+∆+1

∣∣− [ZME
i]i+∆+1,i+∆+1. (10)

Adding all the terms in Eq. (9), the lower bound P̃s for
the success probability reads

P∆
s ≥P̃s = PME

s

− 1

n



dn/2e∑

i=1

Hi(∆) +
n∑

i=dn/2e+1

Hi(−∆)


 , (11)

which depends only on ZME . The bound (11) has two
parts, the first is just the success probability of the min-
imum error case (i.e., the unrestricted case), while the
second takes into account how much this value is dimin-
ished by the additional constraints imposed by the value
∆. The main virtue of this bound is that given the solu-
tion for the minimum error case it provides an expression
on how much this probability is lessened by increasing the
quality of the answers, i.e., by reducing the maximum al-
lowed distance of the answers to the true state.

IV. APPLICATIONS

In this section we apply our findings to two paradig-
matic multi-hypothesis cases. We first discuss the Quan-
tum Change Point (QCP) problem [13–15] and then
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Source
Detector

φ φ φ 0 0 0 0 0

C.P.

Figure 6: A machine produces a signal state and suddenly it
produces another signal. Our task is to determine by mea-
surements the exact moment when this change happens.

briefly discuss the Quantum State Anomaly Detection
(QSAD) problem [16].

The QCP problem is depicted in figure (6). A source
prepares systems in a default state |0〉 for some time and
suddenly it changes and prepares systems in a mutated
state |φ〉. Both states are assumed to be known and the
change is also assumed to occur at any time with the
same probability. The total number of systems is n. The
goal is to identify the position of the mutation with the
highest probability. This is a multi-hypothesis case for
which the optimal ME and UD probabilities of success
are known [13, 14].

The global states can be written as

|Ψk〉 = |0〉⊗k−1|φ〉⊗n−k+1. (12)

The Gram matrix has elements Gi,j = 〈Ψi|Ψj〉 = c|i−j|,
where c = 〈0|φ〉 and w.l.o.g. can be taken to be in the
interval 0 ≤ c ≤ 1. Note that for c 6= 0, 1 the off diagonal
elements of the G decay exponentially as they depart
from the diagonal , which shows that in the QCP the
Hamming distance between states is directly related to
the overlap between states.

The CAD scheme is particularly pertinent for this
problem. It is reasonable to assume that here some devi-
ations of the output guess from the true change point can
be tolerated, but not too many in order to avoid jeopar-
dizing the validity of the identification task. In Fig. 7
we show the success probability as a function of ∆ as
given by the SDP (5) for c = 0.6 and n = 25. We note
a remarkable increase in the success probability by just
allowing one error deviation of the guess. The value of Ps
jumps almost a factor of two, from 0.27 for ∆ = 0, to 0.50
for ∆ = 1. Also the inconclusive probability drops from
0.73 to 0.4, while only 10% of the answers will be erro-
neous (and just by one position). If these are counted as
satisfactory answers, the total success probability goes
up to 60%. We have checked that these values of the
probabilities essentially remain constant for any n > 25.
We also observe that the probability of success stabilizes
to the ME value for ∆ & 8 (again this threshold value
remains the same for larger values of n). This just shows
that the ME protocol effectively does not yield answers
that are at distance greater than eight space units from
the true state, as can explicitly be seen in Fig. 8.

We next calculate the bound (11). As discussed in
previous section, the bound requires to have the solution
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Figure 7: Probability of success versus the allowed error dis-
tance ∆ for QCP with n = 25 and c = 0.6. The blue solid
curve are the exact numerical SDP values (5). The dotted
green curve is the analytical lower bound (21). We also show
as a reference the red straight line with the value of the min-
imum error scheme.
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Figure 8: Outcome probability profile of the minimum error
scheme of the QCP. The parameter δ = k̂− k0 is the distance
of the output guess k̂ with respect to the position k0 of the
true change point. Here n = 25 , c = 0.6 and we take the
change point to occur at the central position k0 = 13.

ZME , but, as shown in [13], for the QCP can be very well
approximated by he square root measurement, i.e. by a
projective POVM {Ek = |mk〉〈mk|}nk=1, with S |mk〉 =

|Ψk〉 and S =
√
G =

∑
k

√
λk |vk〉〈vk| , where λk and |vk〉

are the eigenvalues and eigenvectors of G, respectively.
The matrix ZME in terms of the square root S simply

reads

ZME =
n⊕

k=1

|sk〉〈sk| with 〈ml|sk〉 = Sl,k, (13)
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i.e. |sk〉 are the column vectors of S.
The crucial point to obtain a useful bound is to prove

that the elements of S away from the diagonal decay

exponentially. From the supplemental material of [13]
we have

Sk,l ≈
√

1− c2
π

∫ π

0

dθ
(sin kθ − c sin(k − 1)θ)(sin lθ − c sin(l − 1)θ)

(1− 2c cos θ + c2)3/2
. (14)

After some straightforward algebra Eq. (14) reads

Sk,l ≈
√

1− c2
4π

∫ π

−π
dθ

[
cos(k − l)θ − cos(k + l)θ

(1− 2c cos θ + c2)1/2

+ χ(k + l, c)] , (15)

where χ(k+l, c) contains terms that oscillate rapidly and
will be considered later (observe that the second term
also oscillates more rapidly than the first). We also note
that the explicit terms terms shown in Eq. (15) corre-
spond to the Fourier series of of the function

µ(θ, c) =
1

(1− 2c cos θ + c2)1/2
, (16)

so we consider

µ̂(k, c) =

∫ π

−π
µ(θ, c)eikθdθ (17)

for k ∈ N. We prove in Appendix A that µ̂(k, c) exhibits
an exponential decay in k given by

|µ̂(r, c)| ≤M0(c)ek log(c). (18)

where M0 =
∫ π
−π µ(θ, c)dθ. The other terms included in

χ(k + l, c) of Eq. (15))are proportional to µ3(r, c) and
can be tackled in a similar fashion. Including the term
proportional to cos(k + l)θ and the terms coming from
χ(k + l, c) we get

Sk.l ≤
√

1− c2
4π

(
M0e

|k−l| log(c) +
2∑

i=−1

Mie
(k+l+i) log(c)

)
.

(19)

We can now calculate ZME inserting (19) into Eq. (13).
We further just take into consideration the (first) domi-
nant term to obtain

∣∣[ZME
i]i,i±∆+1

∣∣ ≤ c e∆ log c
∣∣[ZME

i]i,i
∣∣

∣∣[ZME
i]i±∆+1,i±∆+1

∣∣ ≤ c2 e2∆ log c
∣∣[ZME

i]i,i
∣∣ . (20)

Finally from equation (11) we get

P̃s ≥ (1− 2ce∆ log c + c2e2∆ log c)PME
s , (21)

which shows that the success probability approaches at
least exponentially PME

s for sufficiently large ∆. Note

also that in the limit c→ 0 we recover the obvious result
that PME = PUA. We show the bound (21) along with
the exact numerical results in figure (7). We observe that
indeed the bound approaches the minimum error value
for large ∆.

To end this section we study the Quantum State
Anomaly Detection (QSAD) problem [16, 25] , which
will provide some further insight of the features of the
our certified answers protocol. QSAD can be regarded
as a simplified case of the QCP. The source is assumed
to prepare systems in a given default sate |0〉, however
one (and just one) of the local systems was prepared in
a different anomalous state |φ〉. As in the QCP we as-
sume both states to be known and equal probability for
the position of the anomalous state. The task consists
in identifying the position of the faulty state with the
highest probability when a string of n systems has been
prepared. Also here we may consider a protocol that
yields guesses not deviating more than ∆ units from the
true position of the anomaly.

The set of hypothesis is is given by

|Ψk〉 = |0〉⊗k−1|φ〉|0〉⊗n−k. (22)

and again we define c = 〈φ|0〉 that w.l.o.g. can be taken
to be in the interval 0 ≤ c ≤ 1. Notice that we have a
very simple Gram matrix in this case

Gi,j = 〈ψi|ψj〉 = (1− c2)δij + c2. (23)

This Gram matrix is circulant [26] , and hence the square
root measurement is optimal [13, 25]. It is straightfor-

ward to find S =
√
G:

Si,j = (a− b)δij + b (24)

where

a =

√
1 + (n− 1)c2 + (n− 1)

√
1− c2

n

b =

√
1 + (n− 1)c2 −

√
1− c2

n
(25)

Note that the success probability for the minimum error
scheme is simply [25]

PME
s =

1

n

n∑

i=1

S2
i,i = a2. (26)
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The fact that all source states have the same overlap,
or equivalently have equal Hamming distance, makes the
distance to the true anomaly a less natural parameter in
this case and we have different behaviors for ∆ < bn/2c
and ∆ ≥ bn/2c. It is easy to convince oneself that
the symmetry of the problem implies that the condition
〈ψi|Ej |ψi〉 = 0 for |i−j| ≥ ∆ for any ∆ < bn/2c is in fact
equivalent to impose ∆ = 0 . Whence for 0 ≤ ∆ < bn/2c
we have a constant probability of success, as can be seen
in Fig. 9, and the protocol is equivalent to unambiguous
discrimination. It is interesting to calculate the bound
(11) in this regime. We have

[ZME
i]ii = a2, [ZME

i]i,i±∆+1 = ab

[ZME
i]i±∆+1,i±∆+1 = b2. (27)

From equation (11) we get

P̃s = (a− b)2 = 1− c2. (28)

This value is exactly the unambiguous success probabil-
ity. Notice that for ∆ = 0, the matrix A in Eq. (5) is 11n
and that by symmetry Z = z11n, with z a real parameter.
Then the SDP reads

maximize z

subject to z11n ≤ G
z ≥ 0,

(29)

which is the SDP for the minimum eigenvalue of G. From
(23) it is direct to obtain z = 1− c2, as expected.

For ∆ ≥ bn/2c we can start having some errors, and
the success probability starts to increase from UA to ME
as seen in Fig. 9. We also see that the lower bound (11)
in this regime departs from the PUA

s value. Now at least
one block of ZME can be completely covered by Z∆

which allows for larger contributions to the bound. So
[Z̃j ]ii has some elements constrained to be (a − b)2 and
as ∆ increases new ones equal to the larger value a2.
Defining d := ∆ − bn/2c and recalling that PME

s = a2

and PUA
s = (a− b)2, we obtain from Eq. (11)

P̃s =

{
n−(2d+1)

n PUA
s + 2d+1

n PME
s for n odd

n−2d
n PUA

s + 2d
n P

ME
s for n even,

(30)

which exhibits a nice linear behavior interpolating be-
tween UA and ME.

V. CONCLUSIONS

We have introduced a novel scheme of quantum dis-
crimination for ordered hypothesis of linearly indepen-
dent states that gives certified answers that do not de-
part from the true hypothesis more than a given distance
∆. Our scheme may be of practical importance in cases
where small deviations from the true hypothesis can be
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Figure 9: Probability of success against the error distance ∆
for QSAD with n = 25 and c = 0.6. The blue solid line shows
the numerical results from SDP (5) and the dashed green line
the lower bound Eqs. (28) and (30). We also show as a
reference a black straight line with the value of the minimum
error scheme.

tolerated without compromising the effectiveness of the
discrimination task. The scheme allows to tune at will
the quality versus the quantity of the answers.

We have shown that all the discrimination properties
of a given set of hypotheses are contained in the Gram
matrix of the set. We have obtained a compact SDP for
the optimal solution that can be solved very efficiently.
We have also obtained a lower bound of the success prob-
ability for any value of the deviation that only requires
the knowledge of the minimum error solution. The bound
gives an analytical expression of how much the minimum
error success probability is reduced as the maximum dis-
tance error ∆ is decreased.

We have applied our findings to the quantum change
point problem and the quantum state anomaly detection.
For the former, we have shown that allowing a small de-
parture from the true change point increases quite dra-
matically the success probability. We have computed the
lower bound and shown that the increase of the success of
probability is exponential in the allowed distance of the
errors. For the QSAD we see that up to n/2 the protocol
is equivalent to unambiguous discrimination. The lower
bound for ∆ ≥ n/2 gives a linear interpolation between
UA and ME error protocols.

Our scheme is versatile enough to address other in-
teresting situations. For instance, one might consider
non-symmetric errors, i.e the tolerated distance of for-
ward and backward errors may be different. Also one
can consider incompatibilities, i.e, given some hypothesis
the protocol is required to avoid some specific answers.
One important extension of our protocol would be to con-
sider sets of linearly dependent and noisy states. The
main difficulty here is how to extend the Gram matrix
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formalism in these settings. We are currently exploring
these scenarios.
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Appendix A

In this Appendix we prove that the Fourier coefficients
µ̂(k, c) of Eq. (17) decay exponentially with k as

|µ̂(k, c)| ≤M(c)ek log(c), (A1)

where

M(c) =

∫ π

−π
µ(θ, c)dθ. (A2)

− log(c)

Re(z)

Im(z)

− log(c)− ε

π−π

Figure 10: Path of the contour integral of µ(z, c) in the
complex plane.

Proof. We first extend the function µ(θ, c) to the complex
plane as

µ(z, c) =
1√

(c− eiz)(c− e−iz)
. (A3)

If we take the principal branch of the logarithm as a
domain of z → √z the function µ(z, c), is analytic in
C/{−i log(c), i log(c)} because it is the composition of
several analytic functions. It is a known fact that the
Fourier coefficients of analytic functions decay exponen-
tially [27]. We next compute

µ̂(k, c) =

∫ π

−π
µ(θ, c)eikθdθ, (A4)

for k ∈ N. Notice that due to the symmetry µ(θ, c) =
µ(−θ, c), only the cosine term of eikθ survives. We con-
sider the contour integral in the complex plane shown in

Fig. 10. We will call γc the part of the contour that does
not lie in the real line. By analyticity of µ(z, c) in this
region we have that,

∫ π

−π
µ(θ, c)eikθdθ +

∫

γc

µ(z, c)eikzdz = 0. (A5)

Notice that µ(θ, c) ≥ 0 ∀ θ ∈ [−π, π] and 0 ≤ c ≤ 1, i.e,
µ(θ, c) = |µ(θ, c)|. We also see that the contributions of
the right and left vertical sections of the path cancel out.
Thus, we have

∫ π

−π
|µ(θ, c)|dθ =

∫ π

−π
|µ(x+ i(− log(c)− ε), c)|dx, (A6)

and from Eq. (A5) we get

∣∣∣∣
∫ π

−π
µ(θ, c)eikθdθ

∣∣∣∣ =

∣∣∣∣
∫

γc

µ(z, c)eikzdz

∣∣∣∣

≤
∫

γc

∣∣µ(z, c)eikz
∣∣ dz

=

∫

γc

|µ(z, c)| e−kydz

= ek(log(c)+ε)

×
∫ π

−π
|µ(x+ i(− log(c)− ε), c)|dx

= M(ε, c)ek(log(c)+ε),

where in going from the second to the third r.h.s ex-
pression we use the fact that the the right and left arms
contributions of the contour γc cancel out. Note that the
constant M(ε, c) does not depend on k. Taking the limit
ε→ 0 and recalling Eq. (A6), we get

|µ̂(k, c)| ≤ ek log(c)

∫ π

−π
µ(θ, c)dθ, (A7)

i.e., M(c) =
∫ π
−π µ(θ, c)dθ.

We can calculate in a completely analogous fashion the
Fourier coefficients for other powers of µ(θ, c). For in-
stance, the function χ(k+ l, c) in Eq. (15) includes terms
proportional to µ3(θ, c) and these will also decay expo-
nentially.

All the elements of S =
√
G of the QCP can thus be

expressed as

Sk,l ≤
√

1− c2
4π

(
M0e

|k−l| log(c)

+
2∑

i=−1

Mie
(k+l+i) log(c)

)
, (A8)

where Mi are constants that only depend on c and not
on k or l.
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5
Quantum detection in time II

5.1 Quantum Sequential Hypothesis Testing

We stay still in the scheme where we have a set of states ordered in time but
we want to address a different problem: hypothesis testing of quantum states.
We take a different approach than the usual[Hay01] as we are now incursing
into the area of Sequential Analysis, a wide topic of research in statistics that
stems from the classic works of Abraham Wald [Wal73, WW48].

Related to our work is that of Slussarenko et. al. [SWL+17]. In that
publication the authors also take a fixed error and minimize the average
number of samples needed, however, we consider a more general case as they
restrict the type of error they are allowing.

The methodology in sequential analysis is somewhat distinct from what
one finds in literature known as hypothesis testing. Normally the number of
samples of random variables of an unknown distribution is a fixed number N
and we try to minimize the possible error in our guess. The sequential scheme
was inspired on a test by Neyman and Pearson [NPP33] that compares two
possible hypotheses, however, it presents advantages over this one.

Sequential Analysis proposes a testing procedure called Sequential Probabil-
ity Ratio Test (SPRT) that can be made as samples are available “on the fly”.
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Source Online detector

Global detector

or
ρ ρ ρ ρ ρ ρ ρ ρ

σ σ σ σ σ σ σ σ

Figure 5.1: We consider an i.i.d. source in this problem. Here the source
produces all the time one of two possible states.

It is notable that the methodology changes, because in the SPRT the number
of samples is a random variable. What stays fixed is the maximum error one
asks for. In hypothesis testing there are two types of error, as we mention in
Section (3.1). We can fix both types of error in Sequential analysis and then
ask for the number of copies it takes on average to yield an answer with the
error requirements. The SPRT is based on a cumulative sum of a quantity that
depends on the outcomes of a sequence of measurements. It is an instance of a
martingale [MU05].

If we use a fixed POVM to measure each copy of a quantum state produced
by an i.i.d. source then we will get i.i.d. samples from the same classical
probability distribution and therefore this setting is within the classical SPRT.
Suppose that our hypotheses H0 and H1 correspond to having one of two
possible states ρ and σ respectively and we define a POVM {Ex}. Then,
following the postulate 3 we have two probability distributions

p(x) = tr [Exρ] q(x) = tr [Exσ]. (5.1)

Wald theory tells us that the average number of samples needed to finish the
process of testing in the limit of small errors is given by

⟨N⟩0 ∼ − log ϵ0
D(p||q) ⟨N⟩1 ∼ − log ϵ1

D(q||p) , (5.2)

where ϵ0 and ϵ1 are the Type-I error and Type-II errors which are fixed. Defining
a probability distribution of n outcomes xn = {x1, x2, . . . , xn} as

P (xn) =
n∏

k=1

p(xk) Q(xn) =
n∏

k=1

q(xk), (5.3)
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a log likelihood ratio is calculated after each online measurement as

Zn = log
Q(xn)

P (xn)
=

n∑

k=1

zk. (5.4)

In the first part, we analyzed the case where ρ and σ are qubits and a two
outcome POVM that is parameterised with an angle θ, but it is the same for
all samples. We show an advantage in terms of a reduction of the number of
resources required with respect to the optimal deterministic test, which shows
that the advantages of the classical SPRT translate well into the quantum
setting.

However, quantum mechanics allows for more complicated strategies that
involve changing the measurement apparatus with feedback from the outcome.
These set of strategies can become very complex: weak measurements, collective,
etc. This moves us to ask if there is an improvement over classical sequential
methods. We would like to be able also to quantify this advantage. Also, given
that quantum theory generalizes what can be done with classical resources,
we would like to know what is the maximum advantage (maximum saving of
copies) possible with quantum resources. The complete problem seems very
complicated and we do not address it directly. Nevertheless, we found a lower
bound for the average number of copies needed to do hypothesis testing with
given error bounds in the asymptotic limit of small errors. This bound is a
constraint on the minimum number of copies needed. We call it “ultimate”
because any other protocol with a lower average number of samples would not
fulfill the error constraints that the problem asks. Recently it has been proved
that that in general this bounds are attainable [LTT]. We also give upper
bounds for the average number of copies giving a specific strategy. We also
give an upper bound for a worst-case scenario and give regions of saturability
for qubits.

This is the first extension of sequential analysis in the quantum case, in the
paradigmatic and simplest case of binary quantum hypothesis testing. This is
a promising start of a whole research program to apply quantum sequential
methodologies to all sorts of quantum statistical inference tasks like parameter
estimation, channel discrimination etc. It promises to exploit the advantage of
the sequential method that a decision can be made dynamically as copies are
available.

The case for pure states specially reveals the novelty of our approach as
it presents interesting unexpected behavior. First of all, we find the optimal
global strategy because it coincides with the online one: doing unambiguous
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discrimination at each step. This is very useful because we are able to obtain
closed expressions. A remarkable result is that we can ask for zero error protocols
and find that there is a finite number of copies needed; in contraposition with
the mixed case where the number of copies needed grows indefinitely as the
error goes to zero.

5.2 Online identification of symmetric pure

states

In the sequential analysis scheme we noticed that for pure states the behaviour
is very peculiar if compared with the general mixed state case. Maintaining
ourselves in the case of the i.i.d. machine, i.e. Fig. (5.1) we asked the question
of when unambiguous discrimination is equivalent to the case one uses online
or global measurements with many instances of the machine, which mean many
copies of one state of the two hypotheses. We return to the usual scheme of a
fixed number of copies given and minimizing the average error.

We first study the discrimination of two hypotheses in the unambiguous and
minimum error schemes. In the literature it was observed that for several copies
these schemes are equivalent in terms of the probability of success. However,
for more hypotheses this was largely unexplored. We addressed the question of
unambiguous discrimination of 3 symmetric pure states as it presents sufficient
complications. Having in mind the equivalence between online strategies and
global ones for multiple copies in the two-hypotheses case, it is only natural
to ask if this behavior still persists with 3 hypotheses. We know in general
that discrimination of multiple hypotheses presents difference between local
and global measurements even if the states are separable [BDF+99].

Even in the symmetric case that we consider we find that doing a parametriza-
tion of the overlaps the cases where online strategies equal the global ones are
very particular. We study the multi-copy problem and are able to include cases
that are not available with only one copy because the states are not linearly
independent. We also observe a case when multihypothesis (more than three)
discrimination is equal with online and global protocols.
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We introduce sequential analysis in quantum information processing, by focusing on the funda-
mental task of quantum hypothesis testing. In particular our goal is to discriminate between two
arbitrary quantum states with a prescribed error threshold, ε, when copies of the states can be
required on demand. We obtain ultimate lower bounds on the average number of copies needed
to accomplish the task. We give a block-sampling strategy that allows to achieve the lower bound
for some classes of states. The bound is optimal in both the symmetric as well as the asymmetric
setting in the sense that it requires the least mean number of copies out of all other procedures,
including the ones that fix the number of copies ahead of time. For qubit states we derive ex-
plicit expressions for the minimum average number of copies and show that a sequential strategy
based on fixed local measurements outperforms the best collective measurement on a predetermined
number of copies. Whereas for general states the number of copies increases as log 1/ε, for pure
states sequential strategies require a finite average number of samples even in the case of perfect
discrimination, i.e., ε = 0.

Introduction. Statistical inference permeates almost
every human endeavor, from science and engineering all
the way through to economics, finance, and medicine.
The perennial dictum in such inference tasks has been
to optimize performance—often quantified by suitable
cost functions—given a fixed number, N , of relevant re-
sources [1, 2]. This approach often entails the practical
drawback that all N resources need to be batch-processed
before a good inference can be made. Fixing the number
of resources ahead of time does not reflect the situation
that one encounters in many real-life applications that
might require an online, early, inference–such as change-
point detection [3–6], or where additional data may be
obtained on demand if the required performance thresh-
olds are not met.

Sequential analysis [7] is a statistical inference frame-
work designed to address these shortcomings. Resources
are processed on-the-fly, and with each new measured
unit a decision to stop the experiment is made depend-
ing on whether prescribed tolerable error rates (or other
cost functions) are met; the processing is continued oth-
erwise. Since the decision to stop is solely based on previ-
ous measurement outcomes, the size N of the experiment
is not predetermined but is, instead, a random variable.
A sequential protocol is deemed optimal if it requires the
least average number of resources among all statistical
tests that guarantee the same performance thresholds.
For many classical statistical inference tasks it is known
that sequential methods can attain the required thresh-
olds with substantially lower average number of samples
than any statistical test based on a predetermined num-
ber of samples [7]. The ensuing savings in resources, and
the ability to take actions in real-time, have found appli-

cations in a wide range of fields [3, 8]. Extending sequen-
tial analysis to the quantum setting is of fundamental in-
terest, and with near-term quantum technologies on the
verge of impacting the global market, the versatility and
resource efficiency that sequential protocols provide for
quantum information processing is highly desirable.

In this paper we consider the discrimination of two
arbitrary finite dimensional quantum states [9], ρ (corre-
sponding to the null hypothesis H0) and σ (correspond-
ing to the alternative hypothesis H1), in a setting where
a large number of copies can be used in order to meet
a desired error threshold ε. A first step in this direction
was taken in Ref. [10], which considers the particular case
where ρ and σ are pure states and restricts the analysis to
specific local measurement strategies. Here, we address
the problem in full generality, including arbitrary states,
weak and collective measurements. For collective strate-
gies involving a large fixed number of copies the relation
between this number and the error ε is N ∼ − 1

ξ log ε [11],
where the rate ξ depends on the pair of hypotheses and
on the precise setting as we explain shortly. We show
that one can significantly reduce the expected number of
copies, 〈N〉, by considering sequential strategies where
copies are provided on demand. We give the ultimate
lower-bounds as a single-letter expression of the form,

〈N〉0 ≥ −
log ε

D(ρ‖σ)
+O(1) ,〈N〉1 ≥ −

log ε

D(σ‖ρ)
+O(1) (1)

for ε � 1, where 〈N〉ν is the mean number of copies
given the true hypothesis is ν ∈ {0, 1} and D(ρ‖σ) =
trρ(log ρ − log σ) is the quantum relative entropy. In
addition, we provide upper bounds which, for the worst
case Nwc = max{〈N〉0, 〈N〉1}, are achievable for some
families of states.
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Specifically, we consider quantum hypothesis testing
in a scenario where one can guarantee that for each real-
ization of the test the conditional probability of correctly
identifying each of the hypotheses is above a given thresh-
old. This scenario, first introduced in [10], can be consid-
ered genuinely sequential since such strong error condi-
tions cannot be generally met in a deterministic setting.
The proof method can be easily extended to the more
common asymptotic symmetric and asymmetric scenar-
ios involving the usual type I (or false positive) and type
II (or false negative) errors. We give the optimal scal-
ing of the mean number of copies when the thresholds
for either one or both types of errors are asymptotically
small.

Before proceeding, let us briefly review these funda-
mental hypothesis testing scenarios, which come about
from the relative importance one places between type
I error—the error of guessing the state to be σ when
the true state is ρ whose probability we denote by α =
P (Ĥ1|ρ)—and type II error—the error of guessing ρ when
the state is σ whose probability is β = P (Ĥ0|σ). Often,
the two types of errors are put on equal footing (symmet-
ric scenario) and one seeks to minimise the mean prob-
ability of error ε̄ = η0α + η1β with η0, η1 = 1 − η0 the
prior probabilities for each hypothesis. The mean er-
ror decays exponentially with the number of copies with
an optimal rate given by the Chernoff distance [12, 13],
ξCh = − inf0≤s≤1 log tr(ρ1−sσs).

Yet, there are asymmetric instances, e.g., in medical
trials, where the effect of approving an ineffective treat-
ment (type-II) is far worse than discarding a potentially
good one (type-I). In such cases it is imperative to min-
imise the type II error whilst maintaining a finite proba-
bility of successfully identifying the null hypothesis, i.e.,
p(Ĥ0|ρ) = 1 − α ≥ ps > 0. The corresponding optimal
error rate for quantum hypotheses is given by quantum
Stein’s lemma [14, 15], β ∼ e−ξSN where ξS = D(ρ||σ)
is the quantum relative entropy. If, on the other hand,
we require the type I error to decay exponentially, i.e.,
α ≤ e−rN for some rate r, then the optimal rate is
given by the quantum Hoeffding bound [16, 17]. These
optimal error rates for strategies with fixed number of
copies have found applications in quantum Shannon the-
ory [18], quantum illumination [19], and provide opera-
tional meaning to abstract information measures [20–22].

What the above results also show is that for N fixed
there is a trade-off between the probabilities of commit-
ting either error. The advantage of sequential analysis
is that it provides strategies capable of minimising the
average number of copies when both errors are bounded,
and yields higher asymptotic rates in each of the settings
described above.

Fixed local measurements. We begin by considering
the case when each quantum system is measured with
the same measurement apparatus E, giving rise to iden-
tically distributed samples of a classical probability dis-

tribution. This strategy has the advantage of being easily
implementable, and that it lets us introduce the classical
sequential analysis framework. Specifically, the optimal
classical sequential test, for both the strong error as well
as the symmetric and asymmetric setting, is known to be
the Sequential Probability Ratio Test (SPRT)[23] which
we now review.

After n measurements have been performed, we have
a string of outcomes xn = {x1, x2, . . . , xn}, where each
element has been sampled effectively from a probability
distribution determined by the POVM E = {Ex} and
the true state of the system, i.e., either p(x) := tr(Exρ),
or q(x) := tr(Exσ). For given error thresholds ε0, ε1,
the strong condition demands that for each conclusive
sequence the conditional probabilities obey either

P (ρ|xn) =
η0p(xn)

η0p(xn) + η1q(xn)
≥ 1− ε0, or (2)

P (σ|xn) =
η1q(xn)

η0p(xn) + η1q(xn)
≥ 1− ε1 (3)

where p(xn) =
∏n
k=1 p(xk) since the copies are identical

and independent (the same holds for q). If neither con-
dition is met, a new copy needs to be requested and we
continue measuring. That is, starting at n = 1 at every
step n we check whether

1. P (ρ|xn) ≥ 1− ε0, then STOP and accept H0, with
guaranteed probability of success s0 = 1− ε0.

2. P (σ|xn) ≥ 1− ε1, then STOP and accept H1, with
guaranteed probability of success s1 = 1− ε1.

3. If neither 1 nor 2 hold, continue sampling.

Using (2) and (3), the condition to continue sampling
can be written in terms of a single sample statistic, the
log-likelihood ratio

Zn = log
q(xn)

p(xn)
=

n∑

k=1

zk with zk = log
q(xk)

p(xk)
(4)

as b := logB ≤ Zn ≤ logA =: a, where A = η0
η1

1−ε1
ε1

,

B = η0
η1

ε0
1−ε0 .

It is convenient to interpret Zn as a random walk
(see Fig. 1) that at every instance performs a step of
length zk with probability p(xk), if H0 holds, or with
probability q(xk), if H1 holds. Under H1 the mean
position of the walker at step n is given by 〈Zn〉1 =∑n
k=1〈zk〉1 = n〈z〉1 = nD(q‖p) > 0 where D(q‖p) =∑
x q(x) log q(x)

p(x) is the relative entropy; while for H0,

〈Zn〉0 = −nD(p‖q) < 0. That is, under H1 the walker
has a drift towards the positive axis, while under H0 it
drifts towards the negative axis. We define as the stop-
ping time N the first instance in which the walker steps
out of the region (a, b), i.e., N := inf{n : Zn /∈ (b, a)},
and note that it is a stochastic variable that only de-
pends on the current as well as the past measurement
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Figure 1. Random walk describing the likelihood function Zn
under H0 (green) and H1 (orange). When the value of Zn
crosses b ∼ log ε0 (a ∼ log 1

ε1
) we decide in favour of H0 (H1).

N indicates the corresponding stopping time.

record. The stochastic variable Z := ZN is the position
of the walker at N . The mean value of this position can
be related to the mean number of steps by Wald’s iden-
tity [24],

〈Z〉1 = 〈
N∑

k=1

zk〉1 = 〈z〉1〈N〉1 = D(q‖p)〈N〉1 (5)

under hypothesis H1, and likewise 〈Z〉0 = −D(p‖q)〈N〉0.
In order to estimate 〈N〉i from (5) we need to provide a
good estimate for 〈Z〉i. For this purpose let us first define
X1 as the set of strings x such that b < Zj < a for all
j < n and Zn ≥ a, and X0 as the set of strings x such
that b < Zj < a for all j < n and Zn ≤ b. Then, the
following relations hold:

α =P0(Z ≥ a) =
∑

x∈X1

p(x) ≤
∑

x∈X1

q(x)

A
=

1− β
A

(6)

β =P1(Z ≤ b) =
∑

x∈X0

q(x) ≤
∑

x∈X0

p(x)B = (1− α)B

where in the first (second) inequality we used that q(x)
p(x) ≥

A for strings in X1 ( q(x)p(x) ≤ B for strings in X2), and in the

last equality we have used that limn→∞ P (Zn ∈ (b, a)) =
0 [23], i.e. the walker eventually stops. The above equa-
tions are an instance of so-called Wald’s likelihood ratio
identity [25]. We note that the above inequalities can be
taken to be approximate equalities if we assume that the
process ends close to the prescribed boundary, i.e. there
is no overshooting. In particular, this will be valid in
our asymptotically small error settings where the bound-
aries are far relative to the (finite) step size zk. This
allows us to establish a one-to-one correspondence be-
tween the thresholds A,B and the type I & II errors:

α ≈ 1−B
A−B = ε1(η1−ε0)

(1−ε0−ε1)η0 and β ≈ B(A−1)
A−B = ε0(η0−ε1)

(1−ε0−ε1)η1 .

[33, 34] Neglecting the overshooting also allows us to con-
sider Z as a stochastic variable that takes two values
Z ∈ {a, b}. Under hypothesis H0, a occurs with prob-
ability P0(Z = a) = α and b with P0(Z = b) = 1 − α;
while under hypothesis H1, a and b occur with probabil-

ities P1(Z = a) = 1− β and P1(Z = b) = β. So,

〈Z〉0 = aα+ b(1− α) and 〈Z〉1 = a(1− β) + bβ. (7)

Making use of (5) one can now write a closed expression
for 〈N〉0 and 〈N〉1 in terms of ε1, ε0 and the priors. A
remarkable property of the SPRT with error probabilities
α and β is that it minimizes both 〈N〉0 and 〈N〉1 among
all tests (sequential or otherwise) with bounded type I
and type II errors. This optimality result due to Wald
and Wolfowitz [23] allows us to extend the above results
to the asymmetric scenario. For the symmetric scenario,
the SPRT has also been shown [26] to be optimal among
all tests respecting a bounded mean error ε̄′ ≤ ε̄. In the
asymptotic limit of small error bounds, ε0, ε1 � 1, the
threshold values are a ∼ − log ε1 and b ∼ log ε0, which
correspond to α ∼ η1

η0
ε1 and β ∼ η0

η1
ε0, yielding

〈N〉0 ∼ −
log ε0
D(p‖q) and 〈N〉1 ∼ −

log ε1
D(q‖p) . (8)

The same expressions hold at leading order in the asym-
metric scenario when the type I & II errors are van-
ishingly small, replacing log ε1 and log ε0 by logα and
log β respectively—and in the symmetric scenario replac-
ing both quantities by log ε̄. If one of the error thresholds,
say α, is kept finite while the second is made vanishingly
small β � 1, 〈N〉1 remains finite, while the other condi-

tional mean scales as 〈N〉0 ∼ − (1−α) log β
D(p‖q) .

In the supplemental material [27] we apply these re-
sults to the discrimination of qubit states using projective
measurements and give closed expressions for the optimal
Bayesian mean number of copies 〈N〉 := η0〈N〉0+η1〈N〉1.
Figure 2 shows that in the symmetric setting these re-
stricted sequential strategies already require on aver-
age between 25-50% less resources than the best de-
terministic strategy that uses a fixed number of copies
NCh ∼ − log ε̄/ξCh [12, 21], and requires non-trivial col-
lective measurements [35].

Ultimate quantum limit. Quantum mechanics allows
for much more sophisticated strategies. For a start, per-
forming a non-projective generalized measurement al-
ready gives important advantages (see below). One can
also adapt the measurements depending on the previous
measurement outcomes and, importantly, measurements
may be weak so that each new measurement acts on a
fresh copy but also on the preceding, already measured,
copies. Without loss of generality we can assume that
at every step k we perform a measurement with three
outcomes xk ∈ {0, 1, 2}: the first two must fulfill condi-
tions (2) and (3) and trigger the corresponding guess (H0

or H1 respectively), while the third outcome signals to
continue measuring having an additional fresh copy avail-
able. The measurement at step k is characterized by a
quantum instrumentMk = {Mk

0 ,Mk
1 ,Mk

2}, and the se-
quential strategy is given by a sequence of instruments
M = {Mk}∞k=1. With this, given hypothesis ν = {0, 1},
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Figure 2. Left: ratio between the number of copies required
by the best deterministic strategy, NCh, and the Bayesian
mean number of copies for a sequential strategy based on fixed
local unbiased measurements, 〈N〉local, for pairs of states of
purity r and relative angle θ [27]. Right: ratio between NCh

and the worst-case Nwc, for pairs of states of different purities
r0, r1. The thin lines use the expression (12) for Nwc, whereas
the thick lines represent the cases for which this ultimate limit
of Nwc is attained by a block-sampling strategy.

the probability of getting outcome xk at step k can be
written as

Pν(xk) := tr[Mk
xk
◦Mk−1

2 . . . ◦M1
2(ρ⊗kν )] = tr(Ekxkρ

⊗k
ν )
(9)

where we have used that in order to arrive to step k
a “continue” outcome must be triggered in all previous
steps, and in the last equality we have defined the effec-
tive POVM Ek = {Eki }2i=0. Making use of the indicator
function 11k≤N , the mean number of steps under hypoth-
esis ν can be computed as

〈N〉ν = 〈
N∑

k=1

1〉ν = 〈
∞∑

k=1

11k≤N 〉ν = 〈
∞∑

n=0

11n<N 〉ν =
∞∑

n=0

Tnν

(10)
where Tnν = Pν(n < N) is the probability that the se-
quence does not stop at step n, which from (9) is given
by Tnν = Pν(xn = 2). Optimizing 〈N〉ν over all quan-
tum sequential strategiesM is daunting, as all terms Tnν
are strongly interrelated through the intricate structure
of En. However, a lower bound to each Tnν can be found
by relaxing such structure and only imposing minimal
requirements on the effective POVM; namely the error
bounds (6), positivity and completeness:

min
En

tr(En2 ρ
⊗n
ν ) s.t. Eni ≥ 0,

2∑

i=0

Eni = 11, and (11)

tr[En1
(
σ⊗n −Aρ⊗n

)
] ≥ 0, tr[En0

(
ρ⊗n −B−1σ⊗n

)
] ≥ 0.

This semi-definite program, which can be considered a
two-sided version of the quantum Neyman-Pearson test
[20], is an interesting open problem in its own right. Our
focus, however, is the asymptotic regime of small er-
ror bounds. In these asymptotic scenarios we are able
to show, exploiting some recent strong converse results
in hypothesis testing [31, 36], that for all n < n∗ =

− log ε0(1−A−1)
D(ρ‖σ) , Tn0 ≥ 1 − O(εκ0 ) for some κ ∈ (0, 1) [27],

which leads to the desired bound:

〈N〉0 ≥
bn∗c∑

n=0

Tn0 ≥ −
log ε0(1−A−1)

D(ρ‖σ)
+O(1) . (12)

An analogous bound holds for 〈N〉1. The bounds for
asymmetric (symmetric) scenarios (see [27]) take the
same form, replacing log ε0 by log β (log ε̄) and A−1 by
α (ε̄). In the asymmetric scenario where ε1 or α is kept
finite, it also holds that 〈N〉1 = O(1) and 〈N〉0 is given
by the appropriate version of (12).

Attainability and upper bounds. Consider a sequen-
tial strategy that involves a fixed, collective measurement
K = {Ki}, acting on consecutive blocks of ` copies, yield-
ing two possible distributions p`K , q

`
K . Using the classical

SPRT we get that

〈N〉0 = ` inf
K
〈M〉0 ∼ ` inf

K

− log ε0
D(p`K‖q`K)

∼ − log ε0
D(ρ‖σ)

(13)

where M is the number of blocks used at the stopping
time. In the last relation of (13) we have used the fact
that we are in the asymptotic setting where ε0 � 1 and
therefore we can take arbitrarily long block lengths ` �
1. We also exploit the following property of the measured
relative entropy [14, 37]: supK D(q`K‖p`K) ∼ `D(σ‖ρ).

Notice, however, that for arbitrary states ρ and σ block
sampling can attain either 〈N〉0 or 〈N〉1, but it is un-
known whether one can attain in general both bounds
simultaneously, i.e., whether a measurement achieving
the supremum of lim`→∞ 1

`D(q`K‖p`K) can also attain the
supremum of lim`→∞ 1

`D(p`K‖q`K). For instance, if we
wish to optimize the Bayesian mean number of copies
〈N〉, we can use block sampling to attain

〈N〉block ∼ lim
`→∞

inf
K

(−`η0 log ε0
D(p`K‖q`K)

− `η1 log ε1
D(q`K‖p`K)

)
. (14)

However, this strategy might be sub-optimal and hence
it only provides an upper bound to the optimal Bayesian
mean 〈N〉 ≤ 〈N〉block. This notwithstanding, there are at
least two cases when this upper bound coincides with the
lower bound provided by (12): when ρ and σ commute,
and when the two states do not have common support.
If, say, supp(σ)∩ ker(ρ) 6= 0, one can use block-sampling
to attain (12) for 〈N〉0 and always detect ρ with a fi-
nite number of copies—note that since D(σ‖ρ) =∞, the
lower bound 〈N〉1 = O(1) is also attained.

We can also give achievable lower bounds for a worst-
case type figure of merit Nwc := max{〈N〉0, 〈N〉1}. If,
say, 〈N〉0 > 〈N〉1, then in [27] we give some instances
of qubit pairs where a specific block-sampling strategy
[37] saturates (12) for 〈N〉0, while at the same time
lim`→∞ 1

`D(q`K‖p`K) ≥ D(ρ‖σ), and hence (12) provides
the ultimate attainable limit for Nwc. In Fig. 2 we com-
pareNwc withNCh for several pairs of states, highlighting
the achievable cases, and show a consistent advantage of
sequential protocols over deterministic ones [38].
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Finally, we note that, in an asymmetric scenario where
〈N〉1 is finite and the value of 〈N〉0 achieves the lower
bound (12), sequential protocols provide a strict advan-
tage over Stein’s limit for deterministic protocols by a
factor (1− α).

The curious case of pure states. If the two states are
pure, the behavior of 〈N〉ν changes drastically: it is pos-
sible to reach a decision with guaranteed zero error us-
ing a finite average number of copies. To see this, con-
sider again Eq. (18). Under a zero-error condition, the
minimal (unrestricted) Tnν is achieved by a global unam-
biguous three-outcome POVM [39–41] on n copies, which
identifies the true state with zero error when the first or
the second outcome occurs —at the expense of having
a third, inconclusive outcome. For a single-copy POVM
over pure states, the probabilities cν of the inconclusive
outcome under Hν are subject to the tradeoff relation
c0c1 ≥ trρσ [6], where equality can always be attained
by suitable POVM that maximizes the probability of a
successful identification. Likewise, for a global measure-
ment on n copies we have Tn0 T

n
1 ≥ (trρσ)n. Now, it is

evident that a sequence of n locally optimal unambiguous
POVMs applied on every copy, for which Tnν = cnν , also
fulfills the global optimality condition. Hence, we have

〈N〉ν ≥
∞∑

n=0

Tnν =

∞∑

n=0

cnν =
1

1− cν
=: 〈N〉localν . (15)

This shows that, for pure states, it suffices to perform
local unambiguous measurements to attain the optimal
(finite) average number of copies with zero error un-
der hypothesis Hν . Note that because of the tradeoff
c0c1 ≥ trρσ one cannot attain the minimal values of
〈N〉local0 and 〈N〉local1 for general states ρ, σ, simultane-
ously. For instance, one can reach the minimal value
c0 = tr(ρσ) for one hypothesis, but then having a max-
imal value c1 = 1 for the second; or choose the opti-
mal symmetric setting, c0 = c1 =

√
trρσ, that achieves

the minimum value of both the worst-case Nwc and the
Bayesian mean 〈N〉 with equal priors (see [27]). This is
in stark contrast with the behavior found in [10], where
all strategies considered were based on two-outcome pro-
jective measurements, for which the average number of
copies scaled as 〈N〉 ∝ − log ε.
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SUPPLEMENTAL MATERIAL

This supplemental material contains some technical details as well as some extensions for the interested reader. In
Sec. we state and prove a theorem that provides the lower bounds for the average number of copies, Eq. (12) in the
main text. In Sec. explicit expressions for the optimal sequential test and attainability regions of the worst case
bound are provided for the qubit case. In Sec. we present a second theorem that provides a general lower bound for
the deviation of the measured entropy from its maximum value for arbitrary finite dimensions. Finally, in Sec. we
give the optimality proof for the zero-error protocol for pure states.

CONVERSE PROOF

Our aim here is to prove that if one of the two error bounds is vanishingly small, say ε0 � 1 under the strong error
condition, or β � 1 in the asymmetric scenario (see main text for the definitions), then the mean number of copies
under hypothesis H0 is always lower-bounded by

〈N〉0 ≥
bn∗c∑

n=0

Tn0 ≥ −
log ε0(1− 1/A)

D(ρ‖σ)
+O(1) or (16)

〈N〉0 ≥
bn∗c∑

n=0

Tn0 ≥ −
log β(1− α)

D(ρ‖σ)
+O(1) , (17)

respectively. Analogous bounds also hold for 〈N〉1 when ε � 1 or α � 1, replacing ε0 ↔ ε1, A ↔ B, α ↔ β, and
ρ ↔ σ. We will first provide the proof for the strong error condition and indicate how to adapt it to the other
hypothesis testing scenarios considered here.

In the main text (MT) we have shown that under hypothesis H0 the mean number of sampled copies is given by

〈N〉0 =

∞∑

n=0

Tn0 ≥
n∗∑

n=0

Tn0 , (18)
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where the last inequality holds for all values of n∗ since Tn0 ≥ 0. The nth term in sum, Tn0 = P0(n < N), is the
probability of getting a “continue” outcome at step n, corresponding to the POVM element En2 implicitly defined in
(12) in MT. The continue probability at a particular step n obeys a lower bound given by the following semidefinite
program (SDP)

Tn0 ≥ T̃n0 := min
En

tr(En2 ρ
⊗n
ν ) s.t.





0) {Eni ≥ 0}2i=0 and
∑2
i=0E

n
i = 11

1) tr[En1 (σ⊗n −Aρ⊗n)] ≥ 0

2) tr[En0
(
ρ⊗n −B−1σ⊗n

)
] ≥ 0

. (19)

The conditions in 0) have to hold for any valid POVM, while the second and third conditions are an alternative way
of writing the strong errors conditions, (1) and (2) in the MT, as SDP constrains. For small error bounds ε0 � 1 (i.e.
A = η0

η1
1−ε1
ε1
� 0) the solution of the SDP program in (19) has a characteristic dependence on n as illustrated in Figure

3. When the number of sampled copies n is small it is not possible to meet the low error bound and the probability

Figure 3. Lower bound T̃n0 on the continue probability as a function of the step number n for: (Left) two qubits of equal purity
r = 0.9 and relative angle θ = π/4, for error bounds ε0 = {10−3, 10−4, 10−5, 10−6} (from bottom to top, looking at the left side
of the figure); (Right) two commuting qubits with r = 0.5 and θ = π, for ε0 = {10−8, 10−12, 10−14, 10−16, 10−20} (from bottom
to top, looking at the left side of the figure). The values on the left plot have been obtained by numerically solving the SDP
program of (19), exploiting the block-diagonal structure of iid quantum states ρ⊗n and σ⊗n (see Section ).

of getting a “continue” outcome is Tn0 = 1. This probability remains constant as n increases until it approaches the
critical point n∗ ∼ log(1/ε)/D(ρ‖σ), at which point it rapidly drops to zero. Note that this drop becomes more abrupt

as ε0 decreases. These observations suggest that
∑n∗

n=0 T̃
n
0 is a very tight lower bound to

∑∞
n=0 T̃

n
0 (area under the

curve in Figure 3) and is given to a very good approximation by
∑n∗

n=0 T̃
n
0 ≈ n∗.

With this at hand we can now carry on with the formal presentation and proof of the lower bound.

Theorem 1. Given two finite-dimensional states, ρ (H0) and σ (H1), occurring with prior probabilities η0 and η1
respectively, the most general quantum sequential strategy that satisfies the strong error conditions P (H0|xN = 0) ≥
1 − ε0 and P (H1|xN = 1) ≥ 1 − ε1, where xN ∈ {0, 1} is the output of the measurement at the stopping time N ,
necessarily fulfills the following asymptotic lower bound for the mean number of sampled copies when ε0 � 1:

〈N〉0 ≥ −
(1−A−1) log ε0

D(ρ‖σ)
+O(1) , where A =

η0
η1

1− ε1
ε1

. (20)

Similarly, the most general quantum sequential strategy that satisfies the (weak) error conditions P (Ĥ1|ρ) ≤ α and
P (Ĥ0|σ) ≤ β, where Ĥ0 and Ĥ1 are the events of accepting hypothesis 0 and 1 respectively, necessarily fulfills the
following asymptotic lower bound for the mean number of sampled copies when β � 1:

〈N〉0 ≥ −
(1− α) log β

D(ρ‖σ)
+O(1) . (21)
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Proof. We start by noting that the strong error conditions [see (19)] imply

tr(En1 ρ
⊗n) ≤ 1

A
tr(En1 σ

⊗n) ≤ 1

A
=
η1
η0

ε1
1− ε1

, (22)

tr(En0 σ
⊗n) ≤ 1

B
tr(En0 ρ

⊗n) ≤ 1

B
=
η0
η1

ε0
1− ε0

. (23)

Next we form a two-outcome POVM by binning two outcomes of the effective POVM at step n, as defined in (12)
in MT, Fn = {Fn0 = En0 , F

n
1 := En1 + En2 }. This measurement can be used to discriminate between ρ⊗n and σ⊗n and

the associated type-I and type-II errors will be denoted by α̃n = Tr[Fn1 ρ
⊗n] and β̃n = Tr[Fn0 σ

⊗n]. From (23) and the
above definitions it follows that β̃n ≤ η0

η1
ε0 +O(ε20). In addition, using (23) we find that the probability of continuing

at step n when H0 holds satisfies

Tn0 = tr[En2 ρ
⊗n] = α̃n − tr[En1 ρ

⊗n] ≥ α̃n −
1

A
. (24)

Now we use Lemma 1 stated below, which uses the recently developed methods for strong converse exponents [36]
in order to establish a lower bound on α̃n when the type-II error β̃n is bounded by ε and when n is below a critical
threshold n∗. In particular, applying Lemma 1 to the test defined by Fn above, with type-I & II errors α̃n and
β̃n ≤ η0

η1
ε0 +O(ε20) =: ε, we have that (24) reads

Tn0 ≥ α̃n −
1

A
≥ 1− εκn(ρ,σ) − 1

A
∀ n < n∗ , (25)

where κn(ρ, σ) > 0. The proof for the strong error conditions ends by inserting this lower bound in (18).
For the weak form of error bounds one can follow the same steps as above by writing the type-I and type-II errors of

the sequential strategy as P (Ĥ1|ρ) =
∑∞
k=1 α̃n and P (Ĥ0|σ) =

∑∞
k=1 β̃n. Since β̃n ≥ 0, the error bound P (Ĥ0|σ) ≤ β

translates to β̃n ≤ β, and similarly α̃n ≤ α. The former is directly of the form required for Lemma 1, while the latter
can be used instead of (22), i.e., tr(En1 ρ

⊗n) = αn ≤ α, hence A in (20) becomes α in (21).

Lemma 1. Let ρ and σ be finite-dimensional density operators associated to hypotheses H0 and H1, respectively.
For any quantum hypothesis testing strategy that uses n copies of the states and that respects the type-II error bound
βn ≤ ε, with ε� 1, the type-I error will converge to one at least as

αn ≥ 1− εκn(ρ,σ) for all n < n∗ =
− log ε

D(ρ‖σ)
, (26)

where 0 < κn(ρ, σ) < 1 is given by

κn(ρ, σ) = sup
s>1

s− 1

s

ξn − D̃s(ρ‖σ)

ξn
=
H(ξn)

ξn
, with ξn = − log ε

n
> − log ε

n∗
= D(ρ‖σ) , (27)

where H(ξn) is the strong converse exponent [28] and where the sandwiched Renyi relative entropy [29, 30] is given
by

D̃s(ρ‖σ) =
1

s− 1
log tr

(
σ

1−s
2s ρσ

1−s
2s

)s
, (28)

taking D̃s(ρ‖σ) =∞ when supp ρ 6⊆ suppσ.

Proof. The proof makes use of the following strong converse result by Mosonyi and Ogawa [28] that relates the type
I and type II errors for an arbitary n by means of the sandwiched Renyi relative entropy:

1

n
log(1− αn) ≤ s− 1

s
(D̃s(ρ‖σ) +

1

n
log βn), s > 1 . (29)

Note that in order to avoid confusion with the type-I error, here we use s instead of the traditional α used in the
Renyi entropies. Among the number of properties that make the sandwiched Renyi relative entropy such a formidable
quantity, here we will use two: i) it increases monotonically with s, and ii) lims→1 D̃s(ρ‖σ) = D(ρ‖σ).
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Since βn ≤ ε,

1− αn ≤ en
s−1
s (D̃s(ρ‖σ)+ 1

n log ε) . (30)

Observe that ∀n < n∗ we can define ξn > D(ρ‖σ) such that

n = − log ε

ξn
. (31)

Using this parametrization of n in (30), we have

αn ≥ 1− ε s−1
s

ξn−D̃s(ρ‖σ)
ξn . (32)

Hence, if we define the supremum of the exponent

κn(ρ, σ) := sup
s>1

s− 1

s

ξn − D̃s(ρ‖σ)

ξn
, with ξn = − log ε

n
> − log ε

n∗
= D(ρ‖σ) , (33)

we arrive to the desired result

αn ≥ 1− εκn(ρ,σ) ∀ n < n∗ . (34)

Taking into account that 0 < s−1
s = 1 − 1

s < 1 for all s > 1, that ξn > D(ρ‖σ) for n < n∗, and from conditions i)

and ii) above that D̃s(ρ‖σ) > D(ρ‖σ), it follows that there will always be an s′ realizing the supremum in (33) such
that ξn > D̃s′(ρ‖σ), and therefore 0 < κn(ρ, σ) < 1.

An alternative way to arrive to the result in Lemma 1 is provided in Beigi et al. [31] where, using quantum reverse
hypercontractivity, a second order strong converse result on hypothesis testing is derived.

We finally note that Lemma 1 assures that, below n∗, the continue probability is Tn ∼ 1. On the other hand, from
Stein’s Lemma we know that, for fixed (large) n, the optimal type-II error rate is given by the relative entropy, i.e.,
βn ∼ e−nD(ρ‖σ). This explains why one does not need to continue measuring after n > n∗ = − log ε/D(ρ‖σ), and
Tn>n

∗ ∼ 0 (see Fig. 3), and why we may expect the lower bound to be tight, in the sense that we are not dropping
significant contributions by truncanting the sum in (18). Of course, this still does not imply the attainability of the
lower bound, and even less the simultaneous attainability of the bound for 〈N〉0 and the analogous bound for 〈N〉1.



10

SEQUENTIAL HYPOTHESIS TESTING FOR QUBITS

In this section we study the discrimination of qubit states using sequential methodologies, deriving explicit formulae
for the mean number of copies using different measurement strategies.

Optimal sequential test for fixed projective measurements

We will first study the optimal performance under the simplest type of measurement apparatus, i.e. a fixed Stern-
Gerlach-type measurement. The main purpose of this section is to show that using sequential strategies a simple
projective measurement can determine the correct hypothesis with guaranteed bounded error requiring an expected
number of copies significantly lower than the most general collective measurement acting on a fixed number of copies.
In addition, we provide closed expressions for the optimal asymptotic performance.

Without loss of generality we characterize the two hypotheses by

ρ = r0 |ψ0〉〈ψ0|+ (1− r0)11/2

σ = r1 |ψ1〉〈ψ1|+ (1− r1)11/2 ,
(35)

where |ψi〉 = cos θ4 |0〉 + (−1)i sin θ
4 |1〉, 0 ≤ θ ≤ π, 0 ≤ ri ≤ 1 and the (fixed) local measurement as E0 = |φ〉〈φ| and

E1 = 11−E0, with |φ〉 = cos φ2 |0〉+sin φ
2 |1〉, and 0 ≤ φ ≤ π. With these parametrizations, the probabilities of obtaining

outcome i = 0, 1 are pφ(i) = P (i|H0) = 1
2 [1 + (−1)i cos(θ/2− φ)] and qφ(i) = P (i|H1) = 1

2 [1 + (−1)i cos(θ/2 + φ)],
depending on which hypothesis is true. For simplicity we take equal priors η0 = η1 = 1/2 and study the Bayesian
mean number of copies under the same strong error bounds ε0 = ε1 = ε � 1. In the main text we show that the
optimal test for a given choice of measurement angle is given by Wald’s SPRT strategy, which according to (11) in
MT leads to

〈N〉 = η0〈N〉0 + η1〈N〉1 ∼ −
1

2
log ε

(
1

D(pφ‖qφ)
+

1

D(qφ‖pφ)

)
. (36)

Figure 4. Bayesian mean number of copies 〈N〉 as a function of the measurement angle φ for different pairs of pure states: from
bottom to top θ = {π, π

2
, π
3
, π
4
, π
5
}. The vertical lines show the corresponding optimal measurement angles φ = θ/2. The inset

shows in more detail the case with θ = π
8

, including the curves for noisy states with 1− r = {10−2, 10−3, 10−4} (dashed lines,
from top to bottom).

In Figure 4 we show the Bayesian mean number of copies required to have a guaranteed, asymptotically small
bounded error ε for all outcomes of the experiment. For pure states (r = 1), we observe that the optimal angle is a
singular point located at φ = θ/2, that corresponds to the fully biased measurement for which outcome 1 can only
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occur under hypothesis H1 : p(1|H0) = 0 while p(1|H1) = cos2(θ/2) > 0. Hence, H1 is detected with certainty after a
small number of steps 〈N〉1 ∼ cos−2(θ/2) (independent of the error bound ε), and therefore the leading contribution
to the expected number of copies when hypothesis H0 is true is

〈N〉local ∼
log ε

2 log(cos2 θ2 )
. (37)

Note that this is exactly half of the number of copies that the most general collective deterministic strategy would
require to attain this error bound, since ε = 1

2 (1−
√

1− cos2N (θ/2)) ∼ cos2N (θ/2). This error bound can be attained
with local adaptive measurements for finite N [32] and fixed local measurements for asymptotically large N . The
result in (37) is in agreement with that derived in [10] for the fully biased strategy, which we have shown to be optimal
in the limit of small error bounds (among fixed local measurement strategies). In Figure 4 we also note that a small
change around the optimal value φ = θ/2 produces a very rapid increase of the effective number of copies while the
local minimum at φ = π/2, which corresponds to the fully unbiased measurement, is much more shallow and hence
more robust to a possible measurement misalignment.

We now proceed to study what happens in the presence of noise, when both states are mixed, in particular when
r0 = r1 = r. As shown in the inset of Figure 4, the presence of noise makes the two states more indistinguishable and
a higher number of samples are required to meet the error bound. It is also apparent that in presence of noise the
fully unbiased measurement, φ = π/2, becomes optimal (except for extremely high values of the purity 1− r ∼ 10−5

for which fully biased performs slightly better). The unbiased measurement is straightforward to compute:

〈N〉local ∼
log ε

r sin θ log
(

1−r sin θ
2

1+r sin θ
2

) . (38)

We can again compare 〈N〉 reached by the local measurements (38)with the sample size, N , required by the optimal
deterministic protocol using a predetermined number of copies to achieve the same error ε. When N is large, i.e. ε is
small, this can be obtained from the asymptotic error exponent in the quantum Chernoff bound [12, 21]. We find

NCh ∼
log ε

log
(
1− (1−

√
1− r2) sin2 θ

2

) . (39)

In Figure 2 in MT we compare Eqs. (38) and (39) and observe a reduction of the required number of copies of at least
50% on average if we employ the sequential test instead of the deterministic one. The reduction goes up to 75% if ρ
and σ are very mixed.

For illustration purposes, in Figure 5 we show explicitly the results of several runs of a SPRT using unbiased local
measurements. We observe how the mean trajectories that the cummulative log-likelihood ratio Zn follows point
upwards or downwards depending on the underlying hypothesis. In this simulation, the state ρ, corresponding to H0,
is identified quicker than σ (the decision boundary b is closer than a), despite being more mixed. A histogram of
stopping times under each hypothesis shows us that the distributions of N are well-centered around their empirical
mean, with right tails that are slightly longer; this is also apparent on the left figure from the cross-sections of the
trajectories with the decision boundaries. Finally, we observe that the mean number of copies increases linearly with
log ε for ε� 1, as predicted.

Block-sampling and irrep projection

Here we study the mean number of copies under both hypotheses using a block-sampling strategy where the same
collective measurement is repeated on batches of ` copies. In particular we will consider a collective measurement
for which Hayashi [37] showed that the (classical) relative entropy of the distributions that arise from it, attains
the quantum relative entropy when the block length ` is large. Denoting by M = {Mk} such collective POVM and
by p`M , q

`
M the probability distributions of the outcomes, i.e., {p`M (k) = tr(ρ⊗`Mk)} and {q`M (k) = tr(σ⊗`Mk)}, in

Ref. [37] it is shown that

D
(
p`M‖q`M

)

`
≤ D(ρ‖σ) ≤ D

(
p`M‖q`M

)

`
+ (d− 1)

log(`+ 1)

`
, (40)

where d is the dimension of the underlying Hilbert space, from where

D
(
p`M‖q`M

)

`
→ D(ρ‖σ) as `→∞ . (41)
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Figure 5. (a) Behaviour of the likelihood ratio Zn using unbiased local measurements as a function of the step n, for 3000
realizations of the hypothesis test with θ = π

10
, r0 = 0.7, r1 = 0.9, ε0 = 10−6, ε1 = 10−9, under hypotheses H0 (green) and

H1 (orange). The solid lines show the mean trajectory, and the shaded areas correspond to the 2nd and 3rd quartiles (25%
above and below the mean). The decision boundaries a and b are also plotted. (b) Histogram of stopping times under each
hypothesis. The vertical lines mark the mean of each distribution. (c) The mean number of copies 〈N〉0 as a function of log ε,
for the same state parameters as in (a) and equal error bounds ε0 = ε1 = ε. The solid line represents the mean trajectory of
500 runs, the shaded area shows the 2nd and 3rd quartiles, and the dashed line is the analytic expression 〈Z〉0/D(pφ‖qφ), where
recall that 〈Z〉0 ∼ − log ε for ε� 1.

Quite remarkably, the measurement M in Eq. (40) depends solely on state σ.

As explained in the MT such a strategy allows one to attain the lower bound for one of the hypotheses, say
〈N〉0 ∼ − log ε0(1−A−1)/D(ρ‖σ) for the strong error bounds [cf. Eq. (15) in MT], or

〈N〉0 ∼
log β(1− α)

D(ρ‖σ)
(42)

for the asymmetric setting.

In what follows we compute the (sub-optimal) performance of this very same measurement under the other hypoth-
esis, i.e., 〈N〉1.

For qubit systems, the POVM that achieves the quantum relative entropy [37] corresponds to the simultaneous
measurement of the total angular momentum J2 (eigenspaces labeled by j) and its component along the axis Jz
(eigenspaces labeled by m), where ẑ is picked to be the axis along which the state σ points, i.e., σ = 1/2(11 + r1σz).
The quantum number j labels the SU(2) irreducible representations (irreps), and since it is invariant under the action
of any rigid rotation U⊗n it will only provide information about the spectra of ρ or σ —which we denote λ±i = 1

2 (1±ri)
for i = 0, 1 respectively. The second measurement Jz is clearly not SU(2) invariant and provides information about
relative angle between both hypotheses, and additional information on their spectrum.

Due to the permutational invariance of the ` copies it is possible to write the states in a block-diagonal form in
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terms of the {j,m} quantum numbers (see e.g. [33]):

σ⊗` =

`/2∑

j=jmin

qjσj ⊗
11j
νj

with σj =

j∑

m=−j
q(m|j) |j,m〉〈j,m| , (43)

where 11j are projectors over the subspaces of dimension νj =
(

`
`/2−j

)
2j+1

`/2+j+1 that host the irreps of the permutation

group (i.e. multiplicity space of spin j), jmin = 0 for ` even (jmin = 1/2 for ` odd) and

qj =

(
1− r21

4

)`/2
νjZj , (44)

q(m|j) =
1

Zj
Rm1 with Zj =

Rj1 −R−j1

R1 − 1
and R1 =

1 + r1
1− r1

> 1 (45)

are normalized probability distributions.

Under hypothesis H0 the state has exactly the same structure except for a global rotation around the ẑ axis by an
angle θ,

ρ⊗` =

`/2∑

j=jmin

pjρj ⊗
11j
νj

with ρj =

j∑

m=−j
p(m|j) Uθ |j,m〉〈j,m|U†θ , (46)

where pj and p(m|j) take the form of (44) and (45) replacing r1 and R1 by r0 and R0.

The outcomes of the J2 and Jz measurements lead to probability distributions

p(j,m) = pj p̃(m|j) with p̃(m|j) =

j∑

m′=−j
p(m′|j)|〈j,m|Uθ |j,m′〉|2 , (47)

q(j,m) = qj q(m|j) , (48)

whose relative entropy can be written as

D(q`‖p`) =

`/2∑

j=jmin

qj

j∑

m=−j
q(m|j) log

qj q(m|j)
p(j,m)

∼ log
qj∗ q(j

∗|j∗)
p(j∗, j∗)

(49)

where we have used the fact that for ` � 1, qj is strongly peaked at j∗ = r1`/2 and q(m|j∗) decays exponentially,
and hence it is peaked at m = j∗. In addition we note that

p(j,m = j) = pj

j∑

m′=−j
p(m′|j)|〈j, j|Uθ |j,m′〉|2

= 〈j, j|


pj

j∑

m′=−j
p(m′|j)Uθ |j,m′〉〈j,m′|U†θ


 |j, j〉 =

(
1− r20

4

)l/2−j
νj 〈j, j| ρ⊗2j |j, j〉

=

(
1− r20

4

)l/2−j
νj 〈↑| ρ |↑〉2j =

(
1− r20

4

)l/2−j
νj

(
1 + r0 cos θ

2

)2j

, (50)

where we used the general decomposition of (46), and |↑〉 is short-hand notation for |j = 1/2,m = 1/2〉. Inserting this
expression in (49) and using the definitions in (44) and (45) we finally arrive at

DMσ
(σ‖ρ) := lim

`→∞
1

`
D(q`‖p`) =

1

2
(1− r1) log

1− r21
1− r20

+ r1 log
1 + r1

1 + r0 cos θ

= D(λ1‖λ0) + r1 log
1 + r0

1 + r0 cos θ
, (51)
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where the symbol Mσ recalls that we have chosen M as a measurement over the eigenbasis of σ, which maximizes the
relative entropy D(ql‖pl), and

D(λ1‖λ0) =
1

2
(1 + r1) log

1 + r1
1 + r0

+
1

2
(1− r1) log

1− r1
1− r0

(52)

is the relative entropy between the spectra of σ and ρ. Hence, the second term in (51) can be associated to the
distinguishability caused by the different orientation (non-commutativity) of the states.

On the other hand, from (41) it follows

DMσ
(ρ‖σ) := lim

`→∞
1

`
D(p`‖q`) = D(ρ‖σ)

=
1

2
(1 + r0) log

1 + r0
1 + r1

+
1

2
(1− r0) log

1− r0
1− r1

+ r0 log
1 + r0
1− r1

sin2 θ

2

= D(λ0‖λ1) + r0 log
1 + r0
1− r1

sin2 θ

2
. (53)

From the above results we conclude that applying the measurement that reaches the ultimate bound for one
hypothesis

〈N〉0 = − log β

D(ρ‖σ)
(54)

will result in a sub-optimal value

〈N〉1 ∼ −
logα

DMσ (σ‖ρ)
(55)

for the other hypothesis, with DMσ
(σ‖ρ) given in (51).

We observe that, as expected, when the states commute we can reach the ultimate bound for both 〈N〉0, 〈N〉1. We
also note that, when ρ is pure, one can also preserve asymptotic optimality for both means, since when λ±0 ∈ {1, 0},
DMσ

(σ‖ρ) diverges and the leading contribution in 〈N〉1 vanishes, while 〈N0〉 reaches the optimal value. These results
hold for the block-sampling strategy that uses blocks of large length l� 1, so one needs to find other ways to compute
the finite O(1) contribution to 〈N〉1, as we shall show next.

We have already shown [see (18) in MT] that when both states are pure we can detect both hypotheses with a
finite mean number of copies. If only one of the states is pure, say ρ, it is easy to notice that the J2 measurement
alone guarantees a constant value for 〈N〉1: ρ⊗n lies in the fully symmetric space (with j = n/2) and therefore any
measurement outcome j < n/2 will unambiguously identify σ. The above block-sampling might have an important
overhead when ` is large. A way of reducing this overhead can be devised by leveraging the fact that the measurement
of J2 on n copies commutes with the measurement of J2 on n + 1 for all n ≥ 1: starting at n = 2, we measure J2

sequentially on all available copies until we get an outcome j < n/2, at which moment we stop and accept H1. Note
that each step of this sequence uses the already measured copies, increasing the number of jointly-measured systems
by one. Since the probability of not detecting σ at step n (continue measuring) is given by Tn1 = P (j = n/2) =(
1+r1 cos θ

2

)n
=: qn+, we can write

〈N〉1 =

∞∑

n=0

Tn1 =

∞∑

n=0

qn+ =
1

1− q+
=

2

1− r1 cos θ
. (56)

Note, however, that measuring J2 sequentially is on its own not enough to reach the optimal mean number of copies
also under hypothesis H0, 〈N〉0. For this reason, after every batch of ` copies, `� 〈N〉1 (` = o(log 1/ε)), we interrupt
the sequence of J2 measurements with a measurement of Jz on the last batch of ` copies (and then continue again with
the J2 sequential measurement). The measurement statistics obtained by this procedure mimicks the block-sampling
method described above and hence we are guaranteed to converge to (54).

Alternatively, in order to attain (56) one can directly measure the system in the basis that diagonalizes ρ =
∣∣λ+0 〉〈λ+0

∣∣,
so that an

∣∣λ−0
〉

outcome unambiguously detects σ with probability q− = 1 − q+. It is immediate to check that the
sequential application of this measurement also leads to (56). Again after having measured a sufficiently large number
of copies ` = o(log 1/ε) one can adopt the block-sampling strategy in order to achieve the bound (54).
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Ultimate limit for Nwc. Attainability regions

In this section we study the achievability of the lower bound on the worst-case mean number of copies,

Nwc := max {〈N〉0, 〈N〉1} ≥ max

{
− log ε

D(ρ‖σ)
,− log ε

D(σ‖ρ)

}
, (57)

where for simplicity we assume that both error bounds are equal, i.e., ε0 = ε1 = ε� 1.
In the previous section we have shown that the block-sampling with a given POVM Mσ can reach the optimal value

under H0, but it does so at the expense of attaining a sub-optimal value under H1. Making use of the results of (51)
and (53) one can show that there are pairs of states {ρ, σ} ∈ R for which either

D(ρ‖σ) ≤ DMσ
(σ‖ρ) ≤ D(σ‖ρ) or D(σ‖ρ) ≤ DMρ

(ρ‖σ) ≤ D(ρ‖σ) . (58)

When this happens we can assert that the bound in (57) is attainable, since the worst-case value is attained, i.e.,

Nwc ∼ max

{
− log ε

D(ρ‖σ)
,− log ε

D(σ‖ρ)

}
, (59)

Figure 6 shows some representative regions where (58) is fulfilled, and (59) holds. We observe that for small relative
angles θ almost all states attain the ultimate bound, except for a region around the pairs of equal purity. It is easy
to check that for states with r0 = r1, D(ρ‖σ) = D(σ‖ρ), and therefore (58) cannot be satisfied, independently of the
relative angle θ. When θ = π/2, i.e., when the pair of states exhibits more non-classicality, only pairs comprised by a
highly pure and a highly mixed state can attain the bound.

Figure 6. Regions R of purities (r0, r1) for different relative angles θ, where the ultimate bound for Nwc (59) is achievable. The
red region corresponds to θ = π/2, orange and red to θ = π/10, yellow, orange and red to θ = π/100, and all admissible values
of (r0, r1) are achievable for commuting states (θ = 0).

.

THE OVERHEAD FOR ARBITRARY DIMENSIONS

In this section we would like to explore how conditions (58) look when states ρ and σ have arbitrary dimension
d > 2. In this case, exactly quantifying DMρ

(ρ‖σ) [recall that we denote by Mρ the block-sampling measurement on
` copies that attains D(σ‖ρ) when ` → ∞] is more involved. Here instead we provide a general lower bound for the
deviation of DMρ

(ρ‖σ) from its maximum value D(ρ‖σ). We follow closely Ref. [37].
First, consider the following operation on a state ρ for a given a projective measurement E = {Ej} (i.e., E2

j = Ej
and EjEk = δjkEj),

εE(ρ) :=
∑

j

EjρEj . (60)
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When E commutes with states ρ and σ we have

εE(ρ) = ρ , εE(σ) = σ . (61)

Then, consider a projective measurement F (ρ) = {Fk} that consists of rank-one projectors in the eigenbasis of ρ,
i.e., a measurement of the spectrum of ρ. Note that we have εF (ρ) = ρ, but εF (σ) 6= σ for a generic state σ that does
not commute with ρ. Note also that E (which commutes with ρ and σ) is a coarse-grained measurement of F (ρ); we
can then say that F (ρ) is stronger than E. In [37] this fact is denoted by F (ρ) ≥ E. We then have the following
lemma:

Lemma 2. Let ρ and σ be states and let F (ρ) ≥ E. The quantum relative entropy between ρ and σ can be expressed
as

D(ρ‖σ) = D(εF (ρ)‖εF (σ)) + Tr ρ(log εF (σ)− log σ) . (62)

Proof. Recalling that εF (ρ) = ρ, we have Tr εF (ρ) log εF (σ) = Tr ρ log εF (σ), thus

D(εF (ρ)‖εF (σ))−D(ρ‖σ) = Tr εF (ρ)(log εF (ρ)− log εF (σ))− Tr ρ(log ρ− log σ) = Tr ρ(log σ − log εF (σ)) . (63)

Hence, it follows that

D(εF (ρ)‖εF (σ)) = D(ρ‖σ)− Tr ρ(log εF (σ)− log σ) . (64)

We also need the following lemma:

Lemma 3. For a given projective measurement E such that E ≤ F , if E commutes with σ and ρ we have that

Tr ρ(log εF (σ)− log σ) ≤ sup
i
{Tr ρi(log εF (σi)− log σi)} , (65)

where we define ρi := 1
ai
EiρEi, σi := 1

bi
EiσEi, ai := TrEiρEi, and bi := TrEiσEi.

Proof. Starting from the left side of inequality (65), the following steps hold:

Tr ρ(log εF (σ)− log σ) = Tr[
∑

i

Eiρ(log εF (σ)− log σ)] = Tr[
∑

i

EiρEi(Ei log εF (σ)Ei − Ei log σEi)] (66)

= Tr[
∑

i

aiρi(log εF (σi)− log σi)] ≤ sup
i
{Tr ρi(log εF (σi)− log σi)} =: ω(σ). (67)

We are now ready to derive a bound on DMρ
(ρ‖σ) with the following theorem:

Theorem 2. Let us define the projective measurement Mρ = F (ρ⊗`)×E` acting on ` copies, where E`, applied first,
is a measurement that projects onto the irreps of SU(d)⊗`. Then, F (ρ⊗`) is a spectral measurement of ρ⊗`, i.e., a
projective measurement on the basis that diagonalizes ρ. For this measurment, we have

D(ρ‖σ)− ω(σ)

`
≤ 1

`
DMρ(ρ

⊗`‖σ⊗`) ≤ D(ρ‖σ) . (68)

Proof. We simply use Lemma 2 and Lemma 3 with the change ρ→ ρ⊗` and σ → σ⊗`, and we recall the property of
the quantum relative entropy D(ρ⊗`‖σ⊗`) = `D(ρ‖σ). The result follows from applying Lemma 2 to all the terms in
Lemma 3.

A very generous bound can be obtained by dropping the negative term log εF (σi) in ω(σ) [34]:

ω(σ) ≤ sup
i
−Tr[ρi(log σi)] ≤ max

i
− log[λmin(σi)] . (69)
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ZERO-ERROR PROTOCOL FOR PURE STATES

As we have seen in the MT, as the error ε goes to 0, the average number of copies goes to infinity. However, for
pure states {ρ = |ψ0〉〈ψ0| , σ = |ψ1〉〈ψ1|} there are sequential strategies with local measurements that give a strictly
zero error with a finite average number of samples. Here we detail the protocol already mentioned in the MT and
prove its optimality for equal priors for the Bayesian mean and worst-case number of copies.

To this end, consider a sequence of fixed unambiguous measurements on each copy with inconclusive probabilities
cν if the given state is |ψν〉, ν = 0, 1. We notice that these probabilities satisfy the ’uncertainty’ relation c0c1 ≥ s2,
where s = |〈ψ0|ψ1〉| [? ]. The protocol stops only if one of the states is identified with no error. Hence, at each step
n there are only two possibilities: continue, with conditional probability (after having arrived at step n) cν , or stop,
with conditional probability 1 − cν . The probability of exactly stopping at step n is Pnν = cn−1ν (1 − cν). Then, the
average number of copies required to get a zero-error outcome is

〈N〉ν =

∞∑

n=1

ncn−1ν (1− cν) =

∞∑

n=0

cnν =
1

1− cν
. (70)

Notice that both means are finite if one performs an unambiguous measurement with c0 < 1 and c1 < 1, which is
allowed by the relation c0c1 ≥ s2.

In the case of equal priors, we now show that the symmetric choice c0 = c1 = s gives the optimal Bayesian mean
〈N〉 = (〈N〉0 + 〈N〉1)/2. We observe that the inconclusive probability attained by the optimal global measurement
on n copies of |ψν〉, Tnν , cannot be beaten by any local strategy, hence, using (70) we have

〈N〉 =
1

1− s =
∞∑

n=0

sn ≥
∞∑

n=0

1

2
(Tn0 + Tn1 ) =: 〈N∗〉 . (71)

Analogously to the derivation of (15) in MT, the r.h.s. of (71) corresponds to a relaxation of the original problem in
which we have independently optimized each term in the sum, considering the action of optimal n-copy unambiguous
measurements for each n, hence 〈N∗〉 is a lower bound to the most general protocol. Since n-copy pure states are
simply pure states of larger dimension, we have |〈ψ⊗n0 |ψ⊗n1 〉| = sn, and the equivalent relation Tn0 T

n
1 ≥ s2n holds

for global strategies. Then, the symmetric choice Tn0 = Tn1 = sn minimizes each summand in (71), and we obtain
〈N∗〉 =

∑∞
n=0 s

n = (1− s)−1 = 〈N〉.
Finally, we also note that the symmetric choice also optimizes the figure of merit given by the worst-case number

of copies Nwc = max{〈N〉0, 〈N〉1}. Because of the relation Tn0 T
n
1 ≥ s2n, if Tn0 > sn then Tn1 < sn and Nwc = 〈N〉0 >

1/(1− s). The same argument applies if Tn1 > sn, hence it follows that the optimal measurement has Tn0 = Tn1 = sn

and Nwc = 1/(1− s).
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We consider online strategies for dis-
criminating between symmetric pure
states with zero error when n copies
of the states are provided. Optimized
online strategies involve local, possibly
adaptive measurements on each copy and
are optimal at each step, which makes
them horizon independent, hence robust
in front of particle losses or an abrupt
termination of the discrimination process.
We first review previous results on binary
minimum and zero error discrimination
with local measurements that achieve
the maximum success probability set by
optimizing over global measurements,
highlighting their online features. We
then extend these results to the case of
zero error identification of three sym-
metric states with constant overlap. We
provide optimal online schemes that
attain global performance for any n if
the state overlaps are positive, and for
odd n if overlaps have a negative value.
For arbitrary complex overlaps, we show
compelling evidence that online schemes
fail to reach optimal global performance.
The online schemes that we describe only
require to store the last outcome obtained
in a classical memory, and adaptiveness of
the measurements reduce to at most two
changes, regardless of the value of n.

1 Introduction

The task of discriminating among non-
orthogonal quantum states [1–4] underlies
many prominent applications of quantum infor-
mation sciences. A basic primitive in quantum

communication [5, 6], it also has fundamental
implications in quantum key distribution [7–10],
in the design of quantum algorithms [11], and
in foundations of quantum theory [12–15]. Due
to the no-cloning theorem [16], it is not possible
to perfectly and deterministically identify which
is the state of a given quantum system out of
a known finite set of possible ones, unless these
are mutually orthogonal. If copies of identically
prepared systems in the same unknown state are
provided, we may extract more information and
increase our chances of identifying it correctly.
However, in order to take full advantage of these
extra resources, one generally needs to apply
a collective quantum measurement on all the
provided systems, which requires performing
entangling operations and keeping all systems
to be measured in a coherent quantum memory.
Such collective measurement, once optimized,
is guaranteed to yield the best performance in
the discrimination task allowed by quantum
mechanics, but the necessary requirements
to implement it are hardly met in practical
situations.

More experimentally viable (albeit generally
sub-optimal) schemes are those that only involve
local measurements on each system, thus remov-
ing the need of quantum memories and quantum
correlations in the measurement apparatus. Such
schemes fall under the paradigm of local opera-
tions and classical communication (LOCC). The
question of when can LOCC schemes attain op-
timal (global) performance in a state discrimina-
tion task has been considered in the literature
under different angles [17–26].

The motivation behind this topic is not only
practical, but also foundational: a performance
gap between optimal local and global schemes
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in discriminating separable states is a signature
of the phenomenon called “quantum nonlocality
without entanglement” [27], which has implica-
tions in the capacities of quantum channels [28],
in the ability to hide information to classical
observers [29], and in distinguishing quantum
theory from other generalized probabilistic the-
ories [30].

In this paper, we take a step further from
LOCC and consider online strategies for state
discrimination, that is, feed-forward local mea-
surement schemes that do not depend on know-
ing beforehand the number of copies of the states
available (the horizon), and are optimal at each
step of the process. In contrast to horizon-
dependent LOCC, online schemes do not loose
optimality if some of the systems are lost or if the
procedure stops at an earlier time than planned,
thus making them the most desirable schemes
for robust realistic implementations. This sort of
data processing can be regarded as a self-learning
process [31], and it is the natural procedure in se-
quential analysis algorithms [32, 33].

When trying to discriminate between two
states, it is known that online strategies at-
tain optimal global performance, regardless of
whether one considers minimum error discrimi-
nation [22] or unambiguous identification [19, 21],
the two usual approaches to state discrimina-
tion. Discriminating more than two hypotheses
is a much harder problem: optimal protocols are
only known for certain special cases [4, 34–39],
and results on local distinguishability are even
more scarce [24, 25, 40–42]. Here we tackle the
problem of unambiguous (zero error) identifica-
tion of three symmetric pure quantum states with
constant (but arbitrary) overlap c when n copies
are provided, characterizing for which parame-
ter ranges do online schemes attain global per-
formance. We first rederive the case of binary
discrimination, highlighting the online features of
the optimal local protocols, and then we extend
our formalism to three hypotheses. Specifically,
we show that online strategies based on Bayesian
updating are globally optimal for any n if c ≥ 0,
and for odd n if c < 0. Our analysis straight-
forwardly extends to the case of tensor products
of n trines with constant but different overlaps.
Importantly, the choice of each measurement in
these strategies depends only on the last outcome

obtained, thus greatly limiting the size of the
classical memory required. For complex-valued
overlaps, we provide strong evidence of a gap be-
tween online and global strategies.

The paper is organized as follows. In Sec-
tions 2 and 3 we review online binary minimum-
error discrimination and unambiguous identifi-
cation, respectively, and extend these results to
non-identical copies of the states. This serves us
to set notation and techniques that we use later.
Section 4 contains our main results for three sym-
metric states, and we finish with some conclu-
sions of our analysis.

2 Two-state minimum error discrimi-
nation

Here we briefly review binary discrimination for
minimum error [22, 43] and its extension to the
multi-hypothesis case.

Any two pure states can be written w.l.o.g. as

∣∣∣ψ0/1
〉

=
√

1 + c

2 |0〉 ±
√

1− c
2 |1〉 , (1)

where |0〉 and |1〉 is a basis of the space spanned
by {|ψ0〉 , |ψ1〉} and c = |〈ψ0|ψ1〉|. For later ref-
erence it is convenient to view this parametriza-
tion as |ψ0〉 = ξ0 |0〉 + ξ1 |1〉, where |0〉 and |1〉
are the eigenstates of the unitary operation U =
|0〉〈0|+ e

2iπ
2 |1〉〈1| = |0〉〈0| − |1〉〈1|, |ψ1〉 = U |ψ0〉,

and ξi =
√
λi(G)/2, i = 0, 1, where λi(G) are the

eigenvalues of the Gram matrix whose elements
are gij = 〈ψi|ψj〉. With this parametrization the
operator Ω = ∑

k |ψk〉〈ψk|, which plays a key role
in the extension of larger sets of symmetric states
(Sec 4), is diagonal, i.e., Ω = 2 diag{|ξ0|2, |ξ1|2}.

We assume that the two states can occur with
arbitrary a priori probabilities η0 and η1, re-
spectively. The aim is to minimize the aver-
age error probability Pe = η0p(1|ψ0) + η1p(0|ψ1),
or equivalently maximize the success probabil-
ity Ps = η0p(0|ψ0) + η1p(1|ψ1), where p(r|ψi),
r = 0, 1, is the probability of making the guess
|ψr〉 when the state was |ψi〉. These condi-
tional probabilities are determined by the mea-
surement M performed on the system, which is
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described mathematically as a positive operator-
valued measure (POVM). Here the POVM has
only two elements M = {E0, E1}, with Er ≥ 0
and E0 + E1 = 1. The Born rule dictates that
p(r|ψi) = tr [Er |ψi〉〈ψi|]. The optimal success
probability has the well known expression [5]

Ps = 1 +
√

1− 4η0η1c2

2 . (2)

It is also well known that this success probability
is attained with a POVM with elements that are
the projectors on the positive and negative spec-
trum of the operator Γ = η0 |ψ0〉〈ψ0|−η1 |ψ1〉〈ψ1|,
the so-called Helstrom measurement [5].

The generalization to the multi-copy case is
straightforward. The optimal value of the success
probability Ps(n) = η0p(0|ψ0

⊗n)+η1p(1|ψ1
⊗n) is

obtained by simply replacing c → cn in Eq. (2),
i.e.,

PGs (n) = 1 +
√

1− 4η0η1c2n

2 , (3)

where the superscript G stands for global. The
global measurement attaining this bound acts
jointly on the n copies, hence a quantum memory
to store the systems is required. Note also that
it may involve entangling operations between the
systems.

Let us now succinctly show that there exists
a scheme where each system is measured locally
and still achieves the optimal success probability
given by Eq. (3). It consists of a sequence of Hel-
strom measurements on each system where prior
probabilities are updated at each step k accord-
ing to the Bayes rule

η
(k)
i (rk) =:η(k)

i = p(ψi|rk)

= η
(k−1)
i p(rk| ψi)

η
(k−1)
0 p(rk|ψ0) + η

(k−1)
1 p(rk|ψ1)

. (4)

Here rk = 0, 1 is the outcome value of the k’th
measurement and we have streamlined the nota-
tion when no confusion arises.

The crucial property is that the Helstrom

measurements yield the relation η
(k)
0 η

(k)
1 =

η
(k−1)
0 η

(k−1)
1 c2 for any value of the outcome rk

(see [22]), and thus η
(k)
0 η

(k)
1 = η0η1c2k that, once

inserted in Eq. (2) for k = n − 1, precisely gives
Eq. (3).

The Bayes rule (4) can be seen as a learning
process that updates our belief on the occurrence
of each state. Observe that the optimal value of
the success probability is obtained at each step.
This is an online procedure as the knowledge
of the total number of systems that are avail-
able for measurement is not required, in contrast,
e.g., to dynamic programming problems where
the knowledge of the horizon is needed to carry
out an optimization in reverse [44]. Furthermore,
measurements in this local scheme only depend
on the previous outcome (as opposed to the whole
sequence of previous outcomes), thus the size of
the required classical memory is minimal.

Interestingly, the same Bayesian updating lo-
cal protocol turns out to be optimal in the non-
i.i.d. case, i.e., for two arbitrary multipartite
product states |Φ〉 = |φ1〉 ⊗ |φ2〉 ⊗ · · · ⊗ |φn〉 and
|Ψ〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉 with arbitrary pri-
ors ηΦ and ηΨ, respectively [45]. The overlap
in this case is C = |〈Φ|Ψ〉| = c1c2 · · · cn, with
ck = |〈φk|ψk〉|. We proceed as in the i.i.d. case,
that is, we perform a series of local Helstrom mea-
surements with sequentially updated priors and
get ηkΦη

k
Ψ = η0η1c2

1c
2
2 · · · c2

k. The success probabil-
ity then reads

Ps =
1 +

√
1− 4ηΦηΨc2

1c
2
2 · · · c2

n

2 ,

(5)

i.e., the optimal success probability, Eq. (2) with
c→ C.

Going beyond the binary case is much more in-
volved as there are no closed expressions for the
success probability for arbitrary priors. Optimal
solutions (single or multi-copy) are known only
in very few cases, that essentially correspond to
symmetric instances (see e.g. [4]). Notice that in
any local protocol, even with symmetric sources,
the updating rule will necessarily bias the priors
and hence render the problem intractable analyt-
ically. One can nevertheless carry out a numeri-
cal study. It has been recently shown numerically
that local measurements supplemented with the
Bayesian updating rule do not yield the optimal
global success probability in the minimum error
approach already in the case of three symmetric
states [46] (see also [47] for an analysis with sym-
metric coherent states). However, it remains an
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open question whether this feature also holds for
zero-error protocols, which we discuss next.

3 Two-state zero-error identification

We now turn our attention to protocols that iden-
tify a state without errors at the expense of hav-
ing inconclusive outcomes, a task also known as
unambiguous discrimination [48, 49]. Here we
show that in the binary case there is also a local
online procedure that gives the maximum success
probability provided by the most general global
POVM acting on all systems.

The zero-error POVM in principle has three
elements: F0 and F1, that unambiguously detect
|ψ0〉 and |ψ1〉, respectively, and FI , which we as-
sociate to an inconclusive outcome. In order to
achieve optimality the success probability P us =
η0P (0|ψ0) + η1P (1|ψ1) =: η0p0 + η1p1 is maxi-
mized or, equivalently, the inconclusive probabil-
ity Q = η0P (I|ψ0) + η1P (I|ψ1) =: η0q0 + η1q1
is minimized while keeping the condition that no
errors are committed, i.e P (1|ψ0) = P (0|ψ1) =
0. Notice that necessarily F0 ∝

∣∣∣ψ⊥1 〉〈ψ⊥1
∣∣∣ and

F1 ∝
∣∣∣ψ⊥0 〉〈ψ⊥0

∣∣∣, therefore the two proportionality

constants are the only free parameters. It proves
useful to cast the problem as a semidefinite pro-
gram [50] and use the conditional success proba-
bilities p0, p1 as the parameters to be optimized.
The program reads [39, 51]

max η0p0 + η1p1

s.t. G− Γ ≥ 0
Γ ≥ 0 ,

(6)

where recall that G is the Gram matrix whose
elements are given by the overlaps gij = 〈ψi|ψj〉,
and Γ is a diagonal matrix of the conditional
success probabilities, Γ = diag{p0, p1}. The
first constraint stems from the POVM condition
1−F0−F1 = FI ≥ 0. We note that this condition
does not depend on the priors, only on G. This
is a general feature that applies to any number
of hypotheses. In the binary case it yields the
interesting uncertainty relation

q0q1 ≥ c2, (7)

from which the solution of the SDP (6) follows

directly:

q0 = c

√
η1
η0
, q1 = c

√
η0
η1

(8)

if

c2 ≤ η0
η1
≤ 1
c2 , (9)

and either q0 = 1 and q1 = c2 if η0/η1 ≤ c2, or
q1 = 1 and q0 = c2 if η0/η1 ≥ 1/c2. In these ex-
tremal cases the priors are so biased that the op-
timal measurement discards detecting the state
with the lowest prior and the POVM changes
from having three to two elements. For instance,
in the case q0 = 1 we only have elements F1
and FI with F1 + FI = 1. The symmetric case
η0 = η1 = 1/2 falls inside the range (9) for any
value of the overlap and yields the well-known
minimum inconclusive probability Q = c (see,
e.g., [3]).

The generalization to arbitrary n amounts to
do the change c → cn in Eq. (8). Note that this
replacement also widens the range of validity of
the three outcome POVM

c2n ≤ η0
η1
≤ 1
c2n . (10)

This fact plays an important role when discussing
local protocols. The minimum average success
probability finally reads (here and thereof we as-
sume w.l.o.g. that η0 ≤ η1)

Q(n) =





2√η0η1cn if
√

η0
η1
≥ cn

η0 + η1c2n if
√

η0
η1
≤ cn

. (11)

We next show that the optimal performance
given by Eq. (11) can always be attained with lo-
cal measurements. At first glance this result may
seem a bit surprising because, for a given n and
the same pair of priors, the global optimal POVM
has three outcomes [i.e., Eq. (10) is satisfied],
while a local one has only two [i.e., Eq. (9) is not
fulfilled]. This mismatch could lead us to think
that a local strategy could not attain global op-
timal performance. However, we note that upon
obtaining an inconclusive outcome in a two el-
ement local POVM, the priors get updated in
such a way that they become more equilibrated.
In fact, there is a step where the updated priors
become sufficiently balanced as to satisfy Eq. (9).
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From there on local POVMs also have three out-
comes.

The proof of the agreement between the local
and global procedures for any n and any initial
value of the priors goes as follows. We have to
consider the three different ranges of values where
the ratio of the priors may lie:

(i) η0
η1
≤ c2n, (ii) c2n ≤ η0

η1
≤ c2, (iii) c2 ≤ η0

η1
≤ 1 .

(12)

We start addressing range (iii) (note that the
symmetric case of equal priors falls in this range).
Here both conditions (9) and (10) are satisfied
for any n, i.e., both global and local POVMs give
a non-zero probability of detecting any of the
states. The first local measurement is the op-
timal one yielding the inconclusive probabilities
given by Eq. (8). After this measurement, if we
have not been successful, it is straightforward to
see that the priors are updated to η1

0 = η1
1 = 1/2.

The next measurement is hence optimized for
equal priors, which gives an inconclusive outcome
with probability c for both sates. Upon failing we
repeat the symmetric measurement in all subse-
quent copies. The overall inconclusive probabil-
ity of this local strategy then reads

QL(n) = η0Πn
k=1q

k
0 + η1Πn

k=1q
k
1

= η0c
√
η1
η0
cn−1 + η1c

√
η0
η1
cn−1

= 2√η0η1c
n, (13)

i.e., the optimal value in the first case of Eq. (11).

In the range (i) the priors are so biased that,
even for a global measurement, it is not worth
detecting the state |ψ0〉. The local procedure
consists of a series of measurements {F1 =
|ψ⊥0 〉〈ψ⊥0 |, FI = |ψ0〉〈ψ0|} that either detect un-
ambiguously |ψ1〉 or fail. In this case we have

QL(n) = η0 × (1)n + η1(c2)n = η0 + η1c
2n, (14)

which coincides with the second line of Eq. (11).
Note that, for large n, the region (i) is increas-
ingly small. We would like to stress that, while
all the measurements are identical, the updated
priors are not. Each time one gets an inconclusive
result the belief that the state is |ψ1〉 diminishes

and the belief in favor of |ψ0〉 increases. This bal-
ances the priors, however not enough to be worth
testing the state |ψ0〉. Indeed, Bayesian updating
gives that, for all k ≤ n− 1,

η
(k)
0

η
(k)
1

= 1
c2
η

(k−1)
0

η
(k−1)
1

→ η
(k)
0

η
(k)
1

= 1
c2k

η0
η1
≤ c2, (15)

since η0/η1 ≤ c2n in this range.

The most interesting range is (ii). While the
global strategy uses a three outcome POVM, the
local strategy starts with a fully biased two out-
come measurement (because η0/η1 ≤ c2). Upon
obtaining an inconclusive outcome, the priors are
updated according to Eq. (15) and get more bal-
anced, i.e., our belief that the state is |ψ0〉 in-
creases. We keep doing the same measurement

until a step k0 that yields η
(k0)
0 /η

(k0)
1 ≥ c2. This

step is guaranteed to be reached before n, i.e.,
k0 < n. Simply observe that

η
(k0)
0

η
(k0)
1

= 1
c2k0

η0
η1
≥ c2 → η0

η1
≥ c2(k0+1), (16)

which is always compatible with the initial con-
dition of beginning in range (ii) for some k0 < n
(the actual value of k0 depends on the particu-
lar ratio η0/η1). Therefore, the protocol consists
in performing a sequence of fixed two-outcome
measurements until the k0 step, when we do
a three-outcome measurement for biased priors

η
(k0)
0 and η

(k0)
1 , and continue with a sequence of

three-outcome measurements for balanced priors
as in region (iii) (of course, for as long as we keep
on failing). The probability for n failures is

QL(n) =η0


(1)k0 × c

√√√√η
(k0)
1

η
(k0)
0

× cn−k0−1




+ η1


(c2)k0 × c

√√√√η
(k0)
0

η
(k0)
1

× cn−k0−1


 ,

(17)

were we have explicitly displayed the terms corre-
sponding to the three different stages of the pro-
cedure. Now, taking into account the expression
of the updated priors ratio Eq. (15), we get

QL(n) = η0

√
η1
η0
cn + η1

√
η0
η1
cn = 2√η0η1c

n,

(18)
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which again coincides with the global bound,
Eq. (11).

We can summarize the procedure in all three
regions by the position k0 of the first three-
outcome local measurement in the sequence. In
region (iii), k0 = 0 and we already start with
a three outcome local measurement. In region
(ii), k0 ≤ n − 1, i.e., the accumulated balance
of the priors given by the inconclusive outcomes
induces to start a three-outcome measurement at
some point before reaching n. Finally, in region
(i), for very biased priors the number of copies
is not enough to abandon the strategy that only
detects one of the states.

As in the minimum error case, this local pro-
tocol works also in the non-i.i.d. case of product
states. One just needs to take into account that
at each step k we have a different overlap ck and
also a different validity range Eq. (9). The min-
imum failure probability is simply Eq. (11) with
cn replaced by C = c1c2 · · · cn.

It is worth emphasizing that the local proce-
dure described yields the optimal success prob-
ability at each step, regardless of total number
of systems that are finally available for measure-
ment. Besides not requiring quantum memories,
the local measurement at any given step depends
only on the outcome of the previous measure-
ment, hence the size of the classical memory re-
quired is minimal. Furthermore, the measure-
ment setting at most changes two times.

4 Zero-error identification of symmet-
ric multiple hypotheses

In this section we extend our results to multi-
hypothesis scenarios. Rather surprisingly, the
performance of online sequential strategies and
their comparison with the global optimal values
for zero-error identification have hardly been ex-
plored. Although even the simplest case of three
symmetric states (TSS) is quite a big challenge,
as discussed in [42], the constraints imposed by
the zero-error requirement provide more chances
to obtain analytical results. Here we will mainly
focus our attention in the TSS case, and also ad-
dress some straightforward generalizations.

The problem we address consists in doing
a zero-error identification of a set of states
that have equal prior probabilities ηi = 1/3,
i = 0, 1, 2, and symmetric overlaps 〈ψ0|ψ1〉 =
〈ψ1|ψ2〉 = 〈ψ2|ψ0〉 = c. We first analyze the case
of positive values of c, and then we address the
negative range. We finally consider the sequen-
tial performance for complex values of c.

The positive range, 0 ≤ c ≤ 1, can actually
be solved for any number r of hypotheses as we
show below. Note that the anomaly identifica-
tion problem [38] falls under this case. The Gram
matrix, G, together with the priors encapsulate
all the discrimination properties of an ensem-
ble, and no explicit form of the states is even
needed, although the very existence of a valid
Gram, i.e., G ≥ 0, imposes some restrictions on
the states that can give rise to G. For instance,
if 0 ≤ c < 1 the states are necessarily linearly
independent (a requisite to have zero-error dis-
crimination [48]) and therefore the dimension d
of the Hilbert space of the states must be at least
d ≥ r. The Gram matrix of a set of three states
with equal overlap c reads

G =




1 c c
c 1 c
c c 1


 . (19)

In this symmetric setting the optimal conditional
success probabilities must be identical, pi = p,
hence the SDP (6) reads

max p

s.t. G− p1 ≥ 0
p ≥ 0 .

(20)

This optimization gives the minimum eigenvalue
of G,

p = λmin(G) = 1− c , (21)
i.e., q = c. Note that this solution is the same
for any number of symmetric hypotheses. Given
n copies of the states, the minimum inconclusive
probability for any set of symmetric states with
constant positive overlaps is Q = cn.

Next we would like to know if the global perfor-
mance can also be reached with an online proto-
col. This way, no quantum memory would be re-
quired and the identification process can be com-
pleted at much earlier times without compromis-
ing the probability of success [52]. The online

Accepted in Quantum 2022-01-28, click title to verify. Published under CC-BY 4.0. 6



protocol consists simply in a local optimal unam-
biguous measurement at each step k. One stops
as soon as a conclusive outcome is obtained. This
protocol can be regarded as a Bayesian updating
procedure: if the identification is successful, the
priors become 1 for the identified state and zero
for the rest of states. If one fails, the updated
priors are again symmetric. The proof follows
directly from the fact that the inconclusive prob-
ability at each step is c and n consecutive failures
have probability cn.

The particular form of the unambiguous
POVM that we need depends on the specific
source states at hand. We present the TSS case
(r = 3) in detail, but the generalization to an
arbitrary number of symmetric source states is
straightforward. As already introduced in Sec-
tion 2, the most convenient parametrization is to
use the eigenbasis of the unitary U = |0〉〈0| +
e2iπ/3 |1〉〈1|+ e4iπ/3 |2〉〈2|, and write the states as
|ψ0〉 = ξ0 |0〉 + ξ1 |1〉 + ξ2 |2〉, |ψ1〉 = U |ψ0〉 and
|ψ2〉 = U2 |ψ0〉. Here the amplitudes ξi are re-
lated to the eigenvalues of G, λi, through

ξi =
√
λi
3 , i = 0, 1, 2, (22)

which is the direct extension of Eq. (1). This
parametrization can be regarded as the canonical
form of symmetric states for any overlap c (real or
complex), and generalizes trivially to any number
of symmetric states. It is useful to note that the
operator Ω = ∑2

k=0 |ψk〉〈ψk| is diagonal in this
basis:

Ω = 3



|ξ0|2 0 0

0 |ξ1|2 0
0 0 |ξ2|2


 (23)

(this property holds true for any set of three sym-
metric states, normalized or not). The specific
values of ξi are

ξ0 =
√

1 + 2c
3 , ξ1 = ξ2 =

√
1− c

3 . (24)

The POVM has elements Fi = p|φ̃i〉〈φ̃i|, i =
0, 1, 2, and FI = 1−∑2

i=0 Fi, where p = 1− c, as
given in Eq. (21). The unnormalized states |φ̃i〉
satisfy the unambiguous condition 〈φ̃i|ψj〉 = δij
and are constructed from a state |φ̃0〉 as |φ̃k〉 =
Uk|φ̃0〉. With this parametrization the fiducial

state simply reads

|φ̃0〉 =
2∑

i=0

√
1

3λi
|i〉 . (25)

Let us next complete the analysis for negative
values of the overlap. We note that G ≥ 0 im-
plies that c ≥ −1/2. In the range c ∈ [−1/2, 0],
the minimum eigenvalue of Eq. (20) changes to
λmin = 1 − 2|c|. For a given number of copies
n the minimum eigenvalue alternates between
1 − 2|c|n and 1 − |c|n depending on whether n
is odd or even, respectively. This means that the
minimum inconclusive probability is

Q(n) =
{

2|c|n if n is odd

|c|n if n is even
. (26)

Note that indeed Q(n) is a decreasing function of
n since |c|2k ≥ 2|c|2k+1 ≥ |c|2k+2 if |c| ≤ 1/2.

A local protocol based on fixed unambiguous
measurements gives a failure probability QL =
2n|c|n, which is away from the optimal value
by an exponential factor. Given such a large
gap, one expects that there exist better local
protocols. The analysis of the extremal value
c = −1/2 gives us the clues on how to pro-
ceed. For this value one has detG = 0, i.e.,
the three states are linearly dependent. This
means that zero-error identification is not pos-
sible [48] with only one copy. Of course, given
n > 1 copies, the tensored states become linearly
independent with a global Gram matrix G > 0.
The global inconclusive probability is given by
Eq. (26) with c = −1/2. It is remarkable that
Q(n) is the same for 2k and 2k + 1 copies of the
state, Q(2k) = Q(2k + 1) = 2−2k, i.e., having
an additional copy is of no use (a result already
noticed in [49]).

Although with only one copy it is impossible
to unambiguously identify the state, one can still
gather useful information to be used in the fol-
lowing measurements. In particular, it is pos-
sible to perform a measurement that is able to
exclude one of the states [53] with 100% proba-
bility. It is easy to see that a POVM with ele-
ments Ek = 2

3 |ψ⊥k 〉〈ψ⊥k |, k = 0, 1, 2, does the job,
as indeed it constitutes a POVM:

∑2
k=0Ek = 1.

Then, from the second step onwards, one can pro-
ceed with two-state discrimination measurements
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as in Section 3 with equal priors. The failure
probability then reads

QL(n) =
(1

2

)n−1
, (27)

which coincides with the optimal value for odd
n, Eq. (26). Hence, this protocol is optimal for
any odd number of states. For even n it does not
reach global optimality, but we conjecture that
also in this case no local protocol can do better
than this one.

We can now tackle the whole negative range
−1/2 < c < 0 with local protocols. The idea
is to combine unambiguous identification with
the state-excluding measurement that has been
the key idea to solve the extremal point c =
−1/2. The unambiguous POVM elements are
Fk = (1−2|c|)|φ̃k〉〈φ̃k|, k = 0, 1, 2, where |φ̃k〉 are
given in Eq. (25) and above, and 1 − 2|c| is the
minimum eigenvalue of G in this range of c. The
crucial observation is that it is possible to con-
struct three additional operators El that exclude
one of the states and satisfy E := ∑2

l=0El =
1−∑2

k=0 Fk =: 1−F . Thus, with the first mea-
surement, either a state is identified with cer-
tainty (operators Fi) or a state is excluded also
with certainty (operators El). In other words, ei-
ther we stop or we continue with a two-state un-
ambiguous measurement (with equal priors after
their update). Using Eq. (25) and Eq. (23) with
the ordering λ0 = λ1 = 1 + |c| and λ2 = 1− 2|c|,
we have

1− F = 3|c|
1 + |c|




1 0 0
0 1 0
0 0 0


 . (28)

The operators

Ek = 3|c|
1 + |c| |ϕ̃k〉〈ϕ̃k| , (29)

where |ϕ̃k〉 = Uk |ϕ̃0〉 and |ϕ̃0〉 = |0〉− |1〉, satisfy
the desired conditions

〈ψk|Ek |ψk〉 = 0, k = 0, 1, 2,
E + F = 1 .

(30)

With this measurement, the success probability
of unambiguously detecting the state is 1 − 2|c|,
and hence the probability of excluding one state
is 2|c|. The following measurements are binary

symmetric which give an optimal inconclusive
probability |c|, Eq. (8) with η0/η1 = 1. There-
fore, after n measurements the overall inconclu-
sive probability reads

QL(n) = 2|c|n, (31)
which again coincides with the optimal value
Eq.(26) for n odd. This result also proves that,
for negative values of c, this protocol is the op-
timal one among all local procedures when the
number of states measured is odd. For even num-
bers of states, although we do no have a rigor-
ous proof, there are strong evidences that this
is also the case. A measurement can provide
three types of information: (i) exclude two states
(unambiguous identification), (ii) exclude one of
the states (exclusion) or (iii) update our belief
over the different states (learning). Naturally
(i) is the most valuable information. In a con-
vex combination of POVM elements that achieve
(ii) and (iii), note that the overall failure prob-
ability with two copies decreases if one puts the
maximum weight in the elements leading to (ii).
The POVM {F0,1,2, E0,1,2} maximizes the contri-
bution to the success probabilities of (i) and (ii)
by construction, hence it is presumably the opti-
mal local measurement for any n.

Finally, for complex overlaps c = seiθ, the
eigenvalues of the Gram matrix read

λk = 1 + 2s cos
[
θ + 2kπ

3

]
, k = 0, 1, 2 . (32)

The minimum eigenvalue is λ1 for 0 ≤ θ ≤ 2π/3,
λ0 for 2π/3 ≤ θ ≤ 4π/3, and λ2 for 4π/3 ≤ θ ≤
2π. The positivity of the Gram matrix imposes
some restrictions on the phase θ for s > 1/2.
The region allowed by the physical restriction
G ≥ 0 is the triangle depicted in Fig. 1. Note
that, by symmetry, values of the overlap c dif-
fering in a phase of 2π/3 are equivalent. In par-
ticular this holds true for the three lines with
θ = 0, 2π/3, 4π/3 and the dashed lines with
θ = π/3, π, 5π/3. That is, for values of c lying
in the “Mercedes-Benz” lines of Fig. 1 a proto-
col of repeated unambiguous local measurements
provide the same success probability as gathering
all the copies and performing an optimal global
measurement, for any n. For values in the dashed
lines of Fig. 1 this is only true for odd n.

For complex values of the overlap and for n = 2
copies, it is possible to find a region with a
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“Mitsubishi-logo” shape where a sequence of two
local measurements yields the same success prob-
ability as the global measurement [42]. How-
ever, the strategy proposed in [42] is not on-
line, since it requires knowing the horizon. In-
deed, it sacrifices optimality in the first step (by
not putting the maximum possible weight on the
POVM elements F0,1,2) in order to match global
performance at the second step. We have car-
ried out numerical checks by optimizing over on-
line strategies with local POVMs of the form
{F0,1,2, E0,1,2,1 − F − E}. Our results indi-
cate that there is no online protocol yielding
the global optimal success probability outside the
dark blue and magenta lines of Fig. 1.

Physically allowed

Global= local

Global= local
odd n

Im c

Re c
− 1

2 1

Figure 1: Complex plane of the overlap values. Horizon-
tal and vertical axis correspond to real and imaginary
parts, respectively. The shaded triangular region is the
physically allowed range. The Mercedes-Benz lines of
length one (solid blue) are the values for which there
is an online protocol that matches the optimal perfor-
mance of global schemes. The rotated lines of length
1/2 (dashed magenta) are the values for which optimal-
ity is also attained for odd numbers of copies.

Our results naturally extend to the case of
product states that are not necessarily identi-
cal, but where each local state comes from a

different symmetric trine {|ψ(k)
0 〉, |ψ

(k)
1 〉, |ψ

(k)
2 〉}

with overlap ck, k = 1, . . . , n. This case cor-
responds to a non-i.i.d. source that produces
three possible global hypotheses of the form

|ψ(1)
i 〉|ψ

(2)
i 〉 · · · |ψ

(n)
i 〉, i = 0, 1, 2. For instance,

as in the case of identical copies, our online
scheme yields the optimal global success prob-
ability if ck ≥ 0, ∀k. Also, if the local trines
have positive and negative values of the over-
lap, the online scheme matches optimal perfor-
mance if Πn

k=1ck < 0. Notice that in this
case there must be a first trine with negative

overlap, say at step k. Recall that the local
measurement for this trine either identifies the
state with probability 1 − 2|ck| or excludes one
of the possibilities with probability 2|ck| and
thereafter one has a symmetric binary problem.
Thus, the total inconclusive probability reads
Q = c1c2 · · · 2|ck||ck+1| · · · |cn| which coincides
with the global optimum 2|c1c2 · · · cn| since ci > 0
for i < k.

5 Conclusions

The tasks of binary pure state identification
for minimum and zero error can be carried out
in an online fashion with optimal performance.
The scheme has no horizon, i.e., the information
about the number of states available does not af-
fect the measurement scheme. Optimality is at-
tained at each step regardless of whether systems
are lost or one has to stop at an earlier time than
planned.

Extending the analysis beyond the binary case
is a much more challenging task. Already the
minimum extension of three symmetric states
is a highly non-trivial case. For minimum er-
ror the direct application of local measurements
with Bayesian updating for two copies of the
states does not give the optimal global perfor-
mance [46, 47]. As far as we are aware, there is
no proof that this is the case for more general
one-way local protocols.

The zero-error identification task, still being
quite involved, offers more possibilities to be
tackled as most of the structure of the POVM
is already fixed by the zero-error constraints. We
have formulated the problem as a semidefinite
program that greatly simplifies the optimization
task and also provides a very useful tool, not only
for numerical calculations but, as we exploit here,
also for obtaining analytical results. It also opens
the path for addressing more complex instances
as, e.g., non-symmetric overlaps or different pri-
ors. We have given a canonical way of writing r
symmetric states in terms of the eigenvalues of
their Gram matrix. For r = 3, we have obtained
the optimal online protocol for arbitrary positive
values of the overlap and any n, and for nega-
tive values for odd n. We have proven that these
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protocols attain the optimal global performance.
These results directly extend to symmetric com-
plex values of the overlap with phases 2π/3. Our
findings for positive overlaps also hold for any
number of hypotheses r. Unlike [42], we are
not restricted to sources of linearly independent
states. We are able to find, e.g., online optimal
protocols for trines of symmetric qubits.

For arbitrary complex values of the overlap,
our results also suggest that there is no on-
line protocol achieving the same performance as
global protocols outside the three symmetric lines
of Fig. 1. The existence of this gap could be ex-
ploited in several ways. For instance, one could
consider an extension of the B92 protocol [7] with
trine states to produce keys of trits. If Alice
were to use multiple copies of a trine state for
which such gap exists with the objective of in-
creasing the key rate, Bob would take advan-
tage by measuring collectively, while Eve would
be forced to measure in an online manner (thus
suboptimally) to keep the rate of communication.
Another direct application of our results is prob-
abilistic cloning of states from a finite set [54] in
the asymptotic limit of producing many clones:
if the set is a trine where there is no gap between
online and global strategies, the task could be op-
timally performed by an online measure and pre-
pare strategy, thus saving resoures with respect
to measuring several copies collectively.
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“The limits of my language mean the limits of
my world.”

— Tractatus logico-philosophicus, Ludwig
Wittgenstein

6
Conclusions

This thesis is divided in two parts as the topics itself ask. This notwithstanding,
there is a clear unity in the topics treated here: the interrelationship between
states ordered in time and their optimal detection.

First we consider a machine that produces a change point. We addressed
two problems that extend previous work on the exact identification of the
change point problem. Having a full solution of the global problem is very
useful as it is easier to address variations. Firstly we ask if the global solution
can be attained with more a practical scheme: online. Surprisingly, the answer
turns out to be yes, in a given region and very close in another one. This is
remarkable because it is not the case for the minimum error scheme. Depending
on the function to optimize, one can get different answers on the resources
needed. Also, this suggests addressing the question of when there is a gain
with measurements that have entangled operators in them in sources that are
not necessarily i.i.d.

The second problem is one that remains in the global case of unambiguous
discrimination for the change point problem but realises that a less constrained
variation of this scheme is possible. These schemes are possible because the set
of copies given to us is ordered in time. Quantum discrimination depends on
the fact that the possible states given by Alice (to Bob) are known beforehand.
In this case, not only are the states known, also the knowledge of their ordering
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is available. This allows for a different protocol that takes this into account. We
introduce a certified answer protocol that interpolates between unambiguous
and minimum error for this kind of ordered cases. We are also able to give an
analytic lower bound for the certified error scheme that depend on the solution
of the well known minimum error problem. Our scheme can be generalized
to graphs of states as we will see in the outlook. The scheme and techniques
introduced in this publication have a lot of versatility and could be applied to
other interesting problems.

For the second part we change to an iid source. This part of the thesis
addresses a very widespread technique in statistics: Sequential Analysis. Re-
markably, in the quantum case, the kind of perspective for sequential analysis
(minimizing the average number of copies) had been addressed very little before.
We investigated this problem for special cases and then, for two hypotheses
addressed the problem in a very general manner (for mixed states of finite
dimension). We were able to give an ultimate lower bound on the average
required samples to fulfill error constraints. We also obtain upper bounds using
a specific strategy. We study a worst case scenario and the attainability of an
upper bound with qubits. Recently it has been shown that our ultimate bound
can be saturated [LTT]. The special case of pure states is also addressed. This
is by no means a trivial case, it shows very nontrivial behavior. For instance,
we observe that the optimal scheme here is to perform online unambiguous
discrimination. Remarkably, there a finite number of states is needed to make
a decision with zero error. Our results hint towards a special relationship
between the online case and unambiguous discrimination for pure states. For
mixed states there is a wide range of problems that can be addressed with the
problem treated here.

The study of the pure case in the previous problem (and the first one of
this thesis) suggested the study of unambiguous discrimination in an online
or sequential fashion. We noticed that the problem of online unambiguous
discrimination had already been addressed for two hypothesis but very few
results were known for more hypotheses. We study the online case of three
hypotheses for multiple copies. We characterize the regions where online
unambiguous is equal to the global for a symmetric case of three hypotheses.
Our results suggests developing a general theory for having criteria of gain
with entangled operators over LOCC ones. We observe a general example
for multihypotheses: the anomally detection matrix. This suggest studying
what makes this example special in terms of no gain with entangled operators.
Also, our results can be applied to study cryptographic protocols based on
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unambiguous discrimination of three hypotheses.

6.1 Outlook

Here I present some ideas that stem from the work done in this thesis. This is
unfinished work as they still have to be developed in the near future.

6.1.1 Graph order

An interesting perspective from our SDP approach in the certified answers is
that it can be generalized for any configuration of graphs of states. That is,
one can regard the linear chain of states as a type of graph. In general, the
relationship of the states can be encoded into a Gram matrix. A certified error
discrimination scheme can be studied in this special case. This would generalize
the notion of distance of the errors. This would be useful to distinguish more
complicated structures of states.

6.1.2 Markov source machines

This project is related with the change point problem. Normally, the sources
one considers theoretically are i.i.d., which means that they produce a the
same state once and again. The change point problem takes a non-i.i.d. source
because it changes at some point. Are there more general sources? The answer
to this question turns out to be positive, we can have a “Markov source”, one
that produces states according to the state of a Markov chain. Basically, as in
Figure (6.1).

One might follow the usual analysis of Markov chains and try to apply it.
For example, a two state Markov chain as in Figure (6.1) would be described
by a stationary state given by

ν =

(
δ

δ+ϵ
ϵ

δ+ϵ

)

which is a probability distribution. This means that the machine produces with
probability δ/(δ + ϵ) the state |0⟩ and with probability ϵ/(δ + ϵ) the state |ϕ⟩.
This might suggest that the machine produces the mixed state

ρϵ,δ =
δ

δ + ϵ
|0⟩⟨0|+ ϵ

δ + ϵ
|ϕ⟩⟨ϕ| . (6.1)
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Figure 6.1: The natural generalization to the Change Point problem yields the
Stable Source problem here presented as a Hidden Markov Model. We recover
the Change Point problem when δ = 0.

However, observe that the machine is not an i.i.d. machine, therefore it does not
produce after N iterations the state ρ⊗N

ϵ,δ . It produces always a state with certain
probability and another one with certain probability but following a Markov
chain. We can write a density matrix for the output of this Markov source but
we don’t have the terminology to reduce it as in the i.i.d. case. Specifically it
takes 3 symbols to denote that we have an i.i.d. machine producing an output
of N states: 1 : ρ, 2 : ⊗ and 3 : N . This notwithstanding, the idea of the
Markov source machine is very compact itself, it is a simple diagram shown in
Figure (6.1).

6.1.3 Optimal chunks for sequential analysis

As we saw, taking samples sequentially can be beneficial for hypothesis testing
with very low errors. However, the usual scheme of hypothesis testing with
quantum states presupposes that one has N of them given at some point.
Considering the benefits of the sequential method then one might wonder if it
would be beneficial always.

Given N copies of a state one might ask if it would be more beneficial
to make a global measurement than to order the set of N states into equal
chunks of l states. One interesting thing is that sequential analysis deals with
the overall estimation procedure. For a given error ordering the states can
imply less number of copies needed. There may be the case that just one
chunk of N copies is needed, but that would be for a specific error. In general,
one would expect that the larger the chunks the better to distinguish them.
However, if the chunks are too big then there might not be enough to stop
as the average number of copies needed to stop would be larger than what
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Figure 6.2: Alice gives Bob N states and Bob cuts this set into chunks of size l.

is available. Therefore, the probability of stopping at step r grows with l
because we can use quantum collective measurements, reaches a maximum,
and decreases with l because the constraint of the total number of available
copies. The existence of a maximum l, the size of the chunks points out the
benefit of ordering the states. More or less like in Figure (6.2), where Alice
sends Bob N copies of a state and then Bob splits the N chunk into smaller
chunks of size l and then processes them.

The question asked here is for the optimal size of chunks that would make
an arbitrary set of N states into an ordered set of R = N/l states.

6.2 A critique on language for the foundations

We have seen several examples of applications from our results. It has been
fruitful to bring the terminology of the change point and sequential analysis to
quantum information science. My personal appreciation is that the problems
studied here are not only practical but also have a relation to the foundations
of quantum mechanics. This might seem not so clear at first but has make me
rethink the concept of foundations of quantum mechanics in certain way.

Quantum information theory shows us new approaches to nature. Never-
theless, the strangeness of quantum theory remains. It seems like a void in the
understanding of reality. Can we overcome this strangeness within quantum
theory? or an extension of it is necessary? More importantly, are the questions
that we have asked the ones that will reveal us something new? There is no
way to know. Nevertheless, there are things we know and that we can name
precisely.

The search to fill the void in our understanding of quantum physics is
normally labeled “foundations” [Nor17]. They constitute a set of specific topics
that range from nonlocality and entanglement, interpretations of quantum
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mechanics, quantum effects (quantum Zeno effect, quantum erasure, etc) among
others. It is my impression that these topics don’t have a clear unified structure.
The concept “foundations of physics” presupposes that there are specific topics
that are fundamental and others that are accessory.

However, we don’t know what are the questions that will reveal us something
new about nature. Labeling a set of problems foundational is in my view a
metaphysical, or religious way of looking at physics problems. I think there is
no such thing as the foundations of physics, specifically, there is not an area
that is more foundational than another. Quantum Mechanics itself was born
as a way to describe some systems, it was only afterwards that it was taken
as a fundamental way to describe nature. I see the concept of “foundations
of physics” as a practical concept to designate a specific set of problems that
have historically revealed important aspects of nature. For me there are only
physics problems. That one problem is foundational is something that is very
context-dependent, in this case, the context is the capability of understanding
of the physicists. Perhaps quantum information is revealing us fundational
insights for our understanding.
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identification of a quantum change point. Physical Review Letters,
119:140506, Oct 2017.

[SCMTB12] G. Sent́ıs, J. Calsamiglia, R. Muñoz-Tapia, and E. Bagan. Quan-
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